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Tree-decorated planar maps: combinatorial results.
with A. Sepúlveda.

Figure: Uniform random tree of size 20 containing the origin on Z2.
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Tree-decorated planar maps: combinatorial results.
with A. Sepúlveda.

Figure: Dynamic on trees of size 10000.
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Tree-decorated planar maps: combinatorial results.
with A. Sepúlveda.

(a) tree-decorated quad. 10 faces, tree of size 6.

(b) Unif. tree-decorated quad. 90k faces and tree
of size 500.
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Interest

Physics: They represent models of quantum gravity (models that “naturally”
appear in an attempt to unify general relativity and quantum mechanics).
Combinatorics: asymptotic growth, connectivity constants, simulations, etc.
are easier to compute/simulate in these generalized lattices.
Probabilies: Models of statistical mechanics where phase transitions are
present, universality of limits (as in the central limit theorem) and where
expected asymptotic behaviors can be exactly computed.
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Combinatorics

Luis Fredes (Université Paris-Saclay) Tree-decorated maps 4 / 31



Planar maps
Planar map: Proper drawing of a planar graph in the surface of the sphere...

up
to homeomorphisms of the sphere.
Too many of them are the same!

= 6=

Figure: Same graph, different embeddings on the sphere.

= =

Figure: Same graph, different embeddings on the sphere.
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Planar maps

A face= A connected component of
the complement of the edges.

The root-edge= distinguished half
edge.

The root-face= face to the left of
the root-edge.

Degree of a face= number of
adjacent edges to it.

degf = 6

degf = 4

degf = 4
root-face

root-edge

vertices
edge
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Planar trees

A planar tree is a rooted map with one
face.

Number of planar trees with a edges

Ca =
1

a + 1

(
2a
a

)
.
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Quadrangulations

Quadrangulation: map whose faces
have degree 4.

We know how to count them by analytic
and bijective methods.

Analytic [Tutte ’60] and Bijective
[Cori-Vauquelin-Schaeffer ’98].
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Quadrangulations with a boundary

Quadrangulation with a boundary: All
faces, but the root-face, have degree 4.

We know how to count them with a
boundary by analytic and bijective
methods.

Analytic by [Bender & Canfield ’94; Bouttier &
Guitter ’09] and bijective by [Schaeffer ’97 ;
Bettinelli ’15]
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Quadrangulations with a simple boundary

Number of quadrangulations with a
simple boundary with:

f internal faces.
simple boundary of size 2p
(root-face of degre 2p).

3f−p2p
(f + 2p)(f + 2p − 1)

(
2f + p − 1
f − p + 1

)(
3p
p

)

Analytic [Bouttier & Guitter ’09] and bijective
[Bernardi & Fusy ’17].
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Spanning tree-decorated maps

Spanning tree-decorated map (ST
map): is a pair (m, t) where:

m is a rooted-map.
t is a submap of m ( t ⊂M m ).
t is a spanning tree of m.

We know how to count ST maps by
analytic and bijective methods.

Analytic by [Mullin ’67] and bijective by [Walsh
and Lehman ’72; Cori, Dulucq & Viennot ’86;
Bernardi ’06]
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Spanning tree-decorated maps

A (f , a) tree-decorated map is a pair
(m, t) where:

m is a rooted map with f faces.
t is a submap of m (t ⊂M m).
t is a tree with a edges.
t contains the root-edge of m.

(f , a) tree decorated maps interpolate: In the case of quadrangulations
a = 1 → quadrangulations with f faces.
a = f + 1 → spanning-tree decorated quadrangulations with f faces.

Luis Fredes (Université Paris-Saclay) Tree-decorated maps 12 / 31



Spanning tree-decorated maps

A (f , a) tree-decorated map is a pair
(m, t) where:

m is a rooted map with f faces.
t is a submap of m (t ⊂M m).
t is a tree with a edges.
t contains the root-edge of m.

(f , a) tree decorated maps interpolate: In the case of quadrangulations
a = 1 → quadrangulations with f faces.
a = f + 1 → spanning-tree decorated quadrangulations with f faces.

Luis Fredes (Université Paris-Saclay) Tree-decorated maps 12 / 31



Counting results

Theorem (F. & Sepúlveda ’19)
The number of (f , a) tree-decorated quadrangulations is

3f−a
(2f + a− 1)!

(f + 2a)!(f − a + 1)!

2a
a + 1

(
3a

a, a, a

)
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Gluing bijection

Theorem (F. & Sepúlveda ’19)
The set of (f , a) tree-decorated maps is in bijection with
(the set of maps with a simple boundary of size 2a and f interior faces)
× (the set of trees with a edges).
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Probabilities
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Random tree-decorated planar maps: limits. with A. Sepúlveda.

How to make sense of limits of graphs as their sizes go to infinity?

We will explore two possible topologies:
Local topology: elements are close if their balls (as maps) are equal up to a
certain point.
Scaling limit topology: comparison as metric spaces.

But how?

Graphs can be seen as metric spaces!
vertices + renormalized graph metric.
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Topologies
Local topology: local distance between two maps:

dloc(m1,m2) = (1 + sup{r ≥ 0 : Br(m1) = Br(m2)})−1

Gromov-Hausdorff topology: Two metric spaces are close if there is a metric
space in which both can be isometrically embedded such that the images are
close.
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(E, dE)

φ(X) φ′(X ′)

(X, d)
(X ′, d′)
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Uniform Trees

ta= Unif. tree with a edges.

Theorem (Kesten ’86)

ta
(d)−−−−−→
local

t∞

Properties
t∞ is an infinite tree.
It has one infinite branch (the
spine).

t∞ construction.

Theorem (Aldous ’91)(
ta,

dTree
a1/2

)
(d)−−−−→
GH

CRT

Properties
The CRT is a tree.
Almost every point is a leaf.
Hausdorff dimension 2.(Duquesne &
Le Gall ’05)

Uniform random tree 50k edges.
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Uniform quadrangulations

qf= Unif. quadrangulation with f faces.

Theorem (Krikun ’06)

qf
(d)−−−−−→
local

UIPQ

Properties
The UIPQ is an infinite quad.

(Sketch by N. Curien)

Theorem (Miermont ’13, Le Gall
’13)(

qf ,
dmap

f 1/4

)
(d)−−−−→
GH

Brownian map

Properties
Hausdorff dim. is 4 (Le Gall ’07).
Homeomorphic to S2 (Le Gall &
Paulin ’08).

Unif. quadrangulation 30k faces.
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Unif. quad. with a boundary: local limit
qf,p= Unif. quadrangulations with a boundary of size 2p and f faces.

Theorem (Curien & Miermont ’12)

qf ,p
(d)−−−−−−−→

local(f→∞)
q∞,p

(d)−−−−−−−→
local(p→∞)

UIHPQ

UIHPQ (sketch by N. Curien & A. Caraceni)
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Uniform quadrangulation with a boundary: GH limit

qf,p= Unif. quadrangulations with a boundary of size 2p and f faces. For a
sequence (p(f ))f∈N, define p = lim p(f )f −1/2 as f →∞.

Theorem (Scaling limit (Bettinelli ’15))

(
qf ,p(f ),

dmap

s(f , p(f ))

)
(d)−−−→
GH


Brownian map if s(f , p(f )) = f 1/4 and p = 0
Brownian disk if s(f , p(f )) = f 1/4 and p ∈ (0,+∞)

CRT if s(f , p(f )) = 2p(f )1/2 and p =∞

Properties (Bettinelli & Miermont
’15)
Brownian disk properties

The boundary is simple.
Hausdorff dim. 4 in the interior, 2
in the boundary.
Homeomorphic to the disk 2d .

Unif. quad. with 30k interior faces and boundary 173.
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Unif. quad. with a simple boundary: local limit

qS
f,p= Unif. quadrangulations with a simple boundary of size 2p and f faces.

Theorem (Curien & Miermont ’12)

qSf ,p
(d)−−−−−−−→

local(f→∞)
qS∞,p

(d)−−−−−−−→
local(p→∞)

UIHPQS

sketch of a UIHPQS .

Luis Fredes (Université Paris-Saclay) Tree-decorated maps 22 / 31



Uniform ST map
Convergence for the local topology (Sheffield ’11).
The limit (if it exists) seems not to the Brownian map.
Expected diameter is of order nχ for 0.275 ≤ χ ≤ 0.288 (Ding & Gwynne
’18, Gwynne, Holden & Sun ’16).

Uniform ST map 100k edges.
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Uniform quadrangulation with a simple boundary: GH limit
qf,p

S= Unif. quadrangulations with simple boundary 2p and f faces.
For a sequence (p(f ))f∈N, define p̄ = lim p(f )f −1/2 as f →∞.

Theorem (Scaling limit (Bettinelli, Curien, F., Sepúlveda ’20+))
If p̄ ∈ (0,+∞), then (

qf ,p(f )
S ,

dmap

f 1/4

)
(d)−−−−→
GH

Brown. disk

Unif. quad. with 30k interior faces and boundary 173.
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Uniform tree-decorated maps

qa
f= Unif. tree-decorated map with f faces and a tree of size a.

Why it is interesting to study
this family??

• New statistical mechanic family

P(qaf = (m, ·)) ∝ #{trees of size a in m}

•It interpolates

a = 1= Uniform quadrangulations.
a = f + 1= Uniform ST
quadrangulations.
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Local limit results

qa
f= Unif. tree-decorated map with f faces and a tree of size a.

Theorem (F. & Sepúlveda ’19+)

qaf
(d)−−−−−−−→

local,f→∞
qa∞

(d)−−−−−−−→
local,a→∞

q∞∞

q∞∞ is the "gluing" of t∞ and UIHPQS .
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Scaling limit results

qa
f= Unif. tree-decorated map with f faces and a tree of size a.

Corollary (F. & Sepúlveda ’19+)

Let qa(f )f = (q, t), with a(f ) ≤ f + 1. Then as a(f )→∞,(
t,

dTree
a(f )1/2

)
(d)−−−−→
GH

CRT .
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Scaling limit conjecture
qa
f= Unif. tree-decorated map with f faces and a tree of size a.

Conjecture (F. & Sepúlveda ’19+)
Let a(f ) = O(f α). Depending on α as f →∞

(
q
a(f )
f ,

dmap

f β

)
(d)−−−−→
GH


Brownian map if α < 1/2, β = 1/4(Proved)
Shocked map if α = 1/2, β = 1/4(In progress)
Tree-decorated map if α > 1/2,

β =
(
2χ− 1

2

)
α− χ+ 1

2

Luis Fredes (Université Paris-Saclay) Tree-decorated maps 28 / 31



Scaling limit conjecture
qa
f= Unif. tree-decorated map with f faces and a tree of size a.

Conjecture (F. & Sepúlveda ’19+)
Let a(f ) = O(f α). Depending on α as f →∞

(
q
a(f )
f ,

dmap

f β

)
(d)−−−−→
GH


Brownian map if α < 1/2, β = 1/4(Proved)
Shocked map if α = 1/2, β = 1/4(In progress)
Tree-decorated map if α > 1/2,

β =
(
2χ− 1

2

)
α− χ+ 1

2

Luis Fredes (Université Paris-Saclay) Tree-decorated maps 28 / 31



Shocked map
Shocked map properties:

It is not degenerated (Proved).
It should be the gluing of a Brownian disk and a CRT.
Hausdorff dim. 4 (Proved).
The tree has Hausdorff dim. 2 (In progress, ≤ 2 proved).
Homeomorphic to S2. (Proved).

Figure: Unif. (90k,500) tree-decorated quadrangulation.

Luis Fredes (Université Paris-Saclay) Tree-decorated maps 29 / 31



Why shocked?
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Thanks for your attention!
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Remarks and extensions

The bijection makes a correspondence between:

[Tree-decorated map] [Map with a boundary, Tree]
Faces of degree q ←→ Internal faces of degree q
Internal vertices of degree d ←→ Internal vertices of degree d
Internal edges ←→ Internal edges
Corner of the tree ←→ Boundary vertices.

We can restrict the bijection to q-angulations.
It can be restricted to some subfamilies of trees:

1 Binary tree-decorated Maps.
2 SAW decorated maps (Already done by Caraceni & Curien).
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What do we obtain when the boundary is not simple?
For bridgeless maps it gives BUBBLE-MAPS!

↓

f1

f2
f3
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Counting results

In the case of spanning tree decorated quadrangulations rooted in the tree we
obtain

C2,f =
2

(f + 1)(f + 2)

(
3f

f , f , f

)

and remember that the Catalan numbers are

C1,f =
1

(f + 1)

(
2f
f

)
A possible generalization of Catalan numbers:

Cm,n = m!

(
m∏
i=1

1
(n + i)

)(
(m + 1)n

n, n, . . . , n︸ ︷︷ ︸
m+1 times

)
=

(
m + n

n

)−1(
(m + 1)n

n, n, . . . , n︸ ︷︷ ︸
m+1 times

)

Proposition
Cm,n is an integer ∀n,m.
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Proof by D. Sénizergues.
Define An,m = # standard young tableaux of shape λ = (n, n, ..., n)︸ ︷︷ ︸

m times

.

From the hook-length formula we see that

Cm,n =

(
m−1∏
i=1

(
n + i

i

))
× An,m+1
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Gromov-Hausdorff topology

Let (E , dE ) be a metric space and
A,B ⊂ E . The Hausdorff distance is

dH(A,B) = inf
{
ε > 0 : A ⊂ Bε,B ⊂ Aε

}
(E, dE)

A B

Consider the set S of compact metric spaces up to isometry classes. The
Gromov-Hausdorff distance between two metric spaces (X , d) and (X ′, d ′) is
defined as

dGH((X, d), (X′, d′)) = inf dH(φ(X), φ′(X′))

where the infimum is taken over all metric spaces (E , dE) and all isometric
embeddings φ, φ′ from X , X ′ respectively into E .

Proposition
The function dGH induces a metric on S . The space (S , dGH) is separable and
complete.
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Gromov-Hausdorff topology

Let (E , dE ) be a metric space and
A,B ⊂ E . The Hausdorff distance is

dH(A,B) = inf
{
ε > 0 : A ⊂ Bε,B ⊂ Aε

}
(E, dE)

A B

Bε

Consider the set S of compact metric spaces up to isometry classes. The
Gromov-Hausdorff distance between two metric spaces (X , d) and (X ′, d ′) is
defined as

dGH((X, d), (X′, d′)) = inf dH(φ(X), φ′(X′))

where the infimum is taken over all metric spaces (E , dE) and all isometric
embeddings φ, φ′ from X , X ′ respectively into E .

Proposition
The function dGH induces a metric on S . The space (S , dGH) is separable and
complete.

Luis Fredes (Université Paris-Saclay) Tree-decorated maps 5 / 7



Gromov-Hausdorff topology

Consider the set S of compact metric spaces up to isometry classes. The
Gromov-Hausdorff distance between two metric spaces (X , d) and (X ′, d ′) is
defined as

dGH((X, d), (X′, d′)) = inf dH(φ(X), φ′(X′))

where the infimum is taken over all metric spaces (E , dE) and all isometric
embeddings φ, φ′ from X , X ′ respectively into E .

Proposition
The function dGH induces a metric on S . The space (S , dGH) is separable and
complete.

Luis Fredes (Université Paris-Saclay) Tree-decorated maps 5 / 7



Gromov-Hausdorff topology
(E, dE)

φ(X) φ′(X ′)

(X, d)
(X ′, d′)

φ φ′

Consider the set S of compact metric spaces up to isometry classes. The
Gromov-Hausdorff distance between two metric spaces (X , d) and (X ′, d ′) is
defined as

dGH((X, d), (X′, d′)) = inf dH(φ(X), φ′(X′))

where the infimum is taken over all metric spaces (E , dE) and all isometric
embeddings φ, φ′ from X , X ′ respectively into E .

Proposition
The function dGH induces a metric on S . The space (S , dGH) is separable and
complete.

Luis Fredes (Université Paris-Saclay) Tree-decorated maps 5 / 7



Gromov-Hausdorff topology
(E, dE)

φ̄(X)
φ̄′(X ′)

(X, d)
(X ′, d′)

φ̄ φ̄′

Consider the set S of compact metric spaces up to isometry classes. The
Gromov-Hausdorff distance between two metric spaces (X , d) and (X ′, d ′) is
defined as

dGH((X, d), (X′, d′)) = inf dH(φ(X), φ′(X′))

where the infimum is taken over all metric spaces (E , dE) and all isometric
embeddings φ, φ′ from X , X ′ respectively into E .

Proposition
The function dGH induces a metric on S . The space (S , dGH) is separable and
complete.

Luis Fredes (Université Paris-Saclay) Tree-decorated maps 5 / 7



Gromov-Hausdorff topology
(E, dE)

φ̄(X)
φ̄′(X ′)

(X, d)
(X ′, d′)

φ̄ φ̄′

Consider the set S of compact metric spaces up to isometry classes. The
Gromov-Hausdorff distance between two metric spaces (X , d) and (X ′, d ′) is
defined as

dGH((X, d), (X′, d′)) = inf dH(φ(X), φ′(X′))

where the infimum is taken over all metric spaces (E , dE) and all isometric
embeddings φ, φ′ from X , X ′ respectively into E .

Proposition
The function dGH induces a metric on S . The space (S , dGH) is separable and
complete.

Luis Fredes (Université Paris-Saclay) Tree-decorated maps 5 / 7



Convergence in distribution

We say that:

Xn
(d)−−−−→
top

X

if for any continuous bounded function f : top → R

E(f (Xn))→ E(f (X ))

In the case of the local topology it translates into:
for all r ∈ R, there exists N0 ∈ N, such that for any n ≥ N0

P(Br (Xn) = m) = P(Br (X ) = m)
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Local limit results

qa
f= Unif. tree-decorated map with f faces and a tree of size a.

Theorem (F. & Sepúlveda ’19+)

qaf
(d)−−−−−−−→

local,f→∞
qa∞

(d)−−−−−−−→
local,a→∞

q∞∞

q∞∞ is the "gluing" of t∞ and UIHPQS .
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