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Invariant measures of discrete interacting particles systems:
algebraic aspects. with J.F. Marckert.

Example: TASEP
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Particle systems of our interests

ηt

∼ µt

ηt+dt

∼ µt+dt

L

Exp(T[ ])|

Our setting: model depends on 4 parameters:
Graph G = (V ,E ) belonging to Zd , Z/nZ .
Set of κ ∈ N ∪ {∞} colors

Eκ = {0, 1, . . . , κ− 1}.
Dependence neighborhood L ≥ 2.
Jump rate matrix

T = [T[u|w ]]{u,w∈EL
κ}.

Notation:
ηt(v) → color of vertex v at time t.
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Invariant measure

Definition
Given T, a distribution µ is said to be invariant if ηt ∼ µ for any t ≥ 0, when
η0 ∼ µ.

ηt ∼ µ

ηt+dt ∼ µ

L

Exp(T[ ])|
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Some references:
Well definition of PS given T:

1 κ <∞, always well defined. [Liggett ’85].
2 κ =∞, not always. Some techniques:

Graphic method [Harris 72’].
Functional analysis [Liggett ’73].
Stochastic domination [Andjel ’82].

Existence of invariant measures for specific PS . [Andjel ’82].
Computation of invariant measures for specific PS. [Derrida et al ’93,
Blythe & Evans ’07...].
Uniqueness / ergodicity?
Convergence to the invariant measure for specific PS?
Rate of convergence? [Benjamini et al ’05, Labbé & Lacoin ’16...].
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Our main question:

Given a (class of) measure, is it possible to
characterize the T’s for which this measure is

invariant?
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A classical sufficient condition for invariance of product measures

Detailed balance equations
The product measure ρZ is invariant by T on Z if

ρaρbT[a,b|u,v ] = ρuρvT[u,v |a,b] ∀a, b, u, v ∈ Eκ

a
ρa

b
ρb

u
ρu

v
ρv

T[a,b|u,v ] T[u,v |a,b]

The product measure case is partially known. [Fajfrová et al ’16].
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Our main question:

Is it possible to characterize the T for which the
distribution of a Markov chain is invariant ?"
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Markov Distribution
A process X has a Markov distribution
(ρ,M), with Markov Kernel (MK) M of
memory m = 1 and initial distribution ρ,
if for any x ∈ E n+1

κ

P(X J0, nK = x) = ρx0

n−1∏
j=0

Mxj ,xj+1 .

Gibbs Distribution
A vector (Xk , k ∈ Z/nZ) is said to have
a Gibbs distribution G (M) characterized
by a MK M, if for any x ∈ E n

κ ,

P(X J0, n−1K = x) =

∏n−1
j=0 Mxj ,xj+1 mod n

Trace(Mn)
.

x0

ρx0

x1

Mx0,x1

P(X J0, 2K = x) =

x2

Mx1,x2
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Invariance schemes

X0

t = 0

X1 X2 X3 X4 X5 X6

X := η0 ∼ (ρ,M)

Y0

t > 0

Y1 Y2 Y3 Y4 Y5 Y6

Y := ηt ∼ (ρ,M)

Evolution under T

Y6

X6

Y7

X7

Y8

X8

Y9

X9

Y0

X0

Y5

X5

Y1

X1

Y2

X2

Y3

X3

Y4

X4

t = 0

t > 0

X := η0 ∼ G (M)

Y := ηt ∼ G (M)

Evolution under T

Main Theorem (F. & Marckert ’17)
Let κ be finite, L = 2 and m = 1. If M > 0 (strictly positive entries) then the
following statements are equivalent:

1 (ρ,M) is invariant by T on Z.
2 G (M) is invariant by T on Z/7Z.
3 G (M) is invariant by T on Z/nZ, for all n ≥ 3.
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Elements of the proof: algebraization

Suppose µt = (ρ,M). We define

LineM,Tn (x) :=
∂

∂t
µt(x1x2 . . . xn−1xn)

= Mass creation rate of x

−Mass destruction rate of x

Definition
A (ρ,M) MD under its invariant distribution is said to be invariant by T on the
line when LineM,Tn ≡ 0, for all n ∈ N.
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Elements of the proof: algebraization

Suppose µt = (ρ,M). We define

LineM,Tn (x) :=
∂

∂t
µt(x1x2 . . . xn−1xn)

=
∑

x−1,x0,
xn+1,xn+2∈Eκ

n∑
j=0

∑
(u,v)∈E2

κ

T[u,v|xj ,xj+1]

(
ρx−1

∏
−1≤k≤n+1

k 6∈{j−1,j,j+1}

Mxk ,xk+1

)
Mxj−1,uMu,vMv,xj+2

− T[xj ,xj+1|u,v]

(
ρx−1

n+1∏
k=−1

Mxk ,xk+1

)

Definition
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κ
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− Tout
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Elements of the proof: algebraization

Suppose µt = (ρ,M). We define for M > 0

NLineM,Tn (x) :=
LineM,Tn (x)∏n−1
i=1 Mxi ,xi+1

=
∑

x−1,x0,
xn+1,xn+2∈Eκ

n∑
j=0

(
ρx−1Mx−1,x0Mx0,x1 × Zxj−1,xj ,xj+1,xj+2 × Mxn,xn+1Mxn+1,xn+2

)
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Elements of the proof: algebraization

Important message:
Line: If M > 0, then (ρ,M) is invariant by T on Z ⇐⇒

NLineM,Tn (x) = ZL
x1,x2,x3+

n−2∑
j=2

Zxj−1,xj ,xj+1,xj+2+ZR
xn−2,xn−1,xn = 0 for all n ∈ N

Cycle of length n: If M > 0, then G (M) is invariant by T on Z/7Z ⇐⇒

NCycleM,Tn (x) =
n−1∑
j=0

Zxj−1,xj ,xj+1,xj+2
= 0

where i := i mod n
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Sketch of proof

1) =⇒ 2) in main theorem: M > 0

1)(ρ,M) is invariant by T on Z =⇒ 2)G(M) is invariant by T on Z/7Z
m

NLineM,Tn ≡ 0 ∀n ∈ N =⇒ NCycleM,T7 ≡ 0

Consider x ∈ E 7
κ and w = x . . . x︸ ︷︷ ︸

` times

x1 x2 x3 x4 x5 x6 x2 x3 x4 x5 x6 x7

NLineM,T7` (w) = Bound. terms︸ ︷︷ ︸
O(1)

+... = 0

Luis Fredes (Université de Bordeaux) Particle systems and maps 19/09/2019 14 / 39



Sketch of proof

1) =⇒ 2) in main theorem: M > 0

1)(ρ,M) is invariant by T on Z =⇒ 2)G(M) is invariant by T on Z/7Z
m

NLineM,Tn ≡ 0 ∀n ∈ N =⇒ NCycleM,T7 ≡ 0

Consider x ∈ E 7
κ and w = x . . . x︸ ︷︷ ︸

` times

x1 x2 x3 x4 x5 x6 x2 x3 x4 x5 x6 x7

NLineM,T7` (w) = Bound. terms︸ ︷︷ ︸
O(1)

+NCycleM,T7 (x) + ... = 0

Luis Fredes (Université de Bordeaux) Particle systems and maps 19/09/2019 14 / 39



Sketch of proof

1) =⇒ 2) in main theorem: M > 0

1)(ρ,M) is invariant by T on Z =⇒ 2)G(M) is invariant by T on Z/7Z
m

NLineM,Tn ≡ 0 ∀n ∈ N =⇒ NCycleM,T7 ≡ 0

Consider x ∈ E 7
κ and w = x . . . x︸ ︷︷ ︸

` times

x1 x2 x3 x4 x5 x6 x2 x3 x4 x5 x6 x7

NLineM,T7` (w) = Bound. terms︸ ︷︷ ︸
O(1)

+2NCycleM,T7 (x) + ... = 0

Luis Fredes (Université de Bordeaux) Particle systems and maps 19/09/2019 14 / 39



Sketch of proof

1) =⇒ 2) in main theorem: M > 0

1)(ρ,M) is invariant by T on Z =⇒ 2)G(M) is invariant by T on Z/7Z
m

NLineM,Tn ≡ 0 ∀n ∈ N =⇒ NCycleM,T7 ≡ 0

Consider x ∈ E 7
κ and w = x . . . x︸ ︷︷ ︸

` times

x1 x2 x3 x4 x5 x6 x2 x3 x4 x5 x6 x7

NLineM,T7` (w) = Bound. terms︸ ︷︷ ︸
O(1)

+`NCycleM,T7 (x) = 0

Luis Fredes (Université de Bordeaux) Particle systems and maps 19/09/2019 14 / 39



Theorem- Strongest form (F. & Marckert ’17)
Let Eκ be finite, L ≥ 2, m ∈ N. If M > 0 (strictly positive entries) then the
following statements are equivalent:

1 (ρ,M) is invariant by T on Z.
2 G (M) is invariant by T on Z/hZ.
3 G (M) is invariant by T on Z/nZ, for all n ≥ m + L.

with h := 4m + 2L− 1

The system of equations in 2) is finite, of degree h in M and linear in T .
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Application: the contact process

ηt

ηt+dt

Exp(1) Exp(2λ)

Corollary (F. & Marckert ’17)
The contact process does not have a non-trivial MD of any memory m ≥ 0 as
invariant distribution.
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Algorithm
We give an algorithm to compute the set of M > 0 invariant by a given T. Case
finite number of colors (κ <∞), memory 1 (m = 1) and range 2 (L = 2).

Find the set of all ν satisfying (linear algebra)∑
u,v∈Eκ

(
νc,u,vT[u,v |a,b] + νa,u,vT[u,v |b,c] + νb,u,vT[u,v |c,a]

)
= νa,b,c

(
Tout

[a,b] + Tout
[b,c] + Tout

[c,a]

)
.

Property: For each ν there exists at most one M satisfying

νx,y ,z =
Mx,yMy ,zMz,x

TraceM3

When M exists, compute it (algebra).

Test if M satisfies NCycleM,T7 ≡ 0 (linear algebra/Gröbner).
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Corollary
There exists a jump rate matrix T which possesses some hidden Markov chain as
invariant distribution.

Idea:

1

1

0

0

2

1

2

1

0

0

2

1

1

1

2

1

0

0

2

1
(T, π(ρ,M))

(T′, (ρ,M))

Proj π(0) = 0, π(1) = π(2) = 1

T[0,0,0|0,1,0] = 270, T[0,1,0|0,0,0] = 294.
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Invariant product measures

Detailed balance equations (DBE)
The product measure ρZ is invariant by T on Z if

ρaρbT[a,b|u,v ] = ρuρvT[u,v |a,b] ∀a, b, u, v ∈ Eκ

Theorem (F. & Marckert ’17)
Let κ <∞ and L = 2. If ρ is a measure with support Eκ then the following are
equivalent:

1 The product measure ρZ is invariant by T on Z.
2 The product measure ρZ/3Z is invariant by T on Z/3Z.

Za,b,c,d =
∑

u,v∈Eκ

(
ρuρvρd
ρbρcρd

T[u,v |b,c] − T[b,c|u,v ]

)
=

∑
u,v∈Eκ

1
ρaρb

(
ρuρvT[u,v |b,c] − ρbρcT[b,c|u,v ]

)
2) ⇐⇒ Za,b + Zb,c + Zc,a = 0, ∀a, b, c ∈ Eκ and (DBE) =⇒ Z ≡ 0.
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Survival and coexistence for spatial population models with
forest fire epidemics. with A. Linker. and D. Remenik.

Motivation from math-biology: Find models of population dynamics achieving
biodiversity.

References:
Predators [Mimura & Kan-on ’86, Hofbauer & Sigmund ’89, Schreiber
’97.]
Random fluctuations in the environment.[Mao, Marion & Renshaw ’02,
Zhu and Yin ’09.]
Random diseases.[Holt & Pickering ’85, Saenz & Hethcote ’06.]
Crowding effect.[Sevenster ’96, Hartley & Shorrocks ’02, Gavina et al
’18.]

Our contribution: Design + study of a stochastic model of population dynamics
with long-time coexistence.
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Gypsy moth infestation model.

One year life’s cycle. Discrete time.
When population density is too high, it
gets attacked by epidemics. Forest fires.

Durrett & Remenik ’09.
Our work: Multi-type model
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Our Multi-type model:
Space: Graph GN = (VN ,EN) on N vertices.
Configurations: ηk = {ηk(v)}v∈VN

global state of the system at time k .

ηk(v) → type of (the particle at) v at time k.

Initial configuration: η0.
Evolution: Two consecutive steps (per unit of time).

Growth: A site x of type i gives birth to
Poisson(β(i)) individuals, spreads them
randomly on a neighborhood NN(x) and
then dies. The type of x = the type of a
unif. choice over the individuals x received.

Epidemic: Each site x of type i is infected
with probability αN(i). In this case, the
infection wipes out the entire connected
component of x with the same type as x .

ρk(i) =
1
N

∑
x∈VN

1{ηk (x)=i}
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with probability αN(i). In this case, the
infection wipes out the entire connected
component of x with the same type as x .

ρk(i) =
1
N

∑
x∈VN

1{ηk (x)=i}
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Theorem (Durrett & Remenik ’09)
Hypothesis:

Number of species: one.
Space: GN uniform random 3-regular graphs with N vertices.
Offspring: β ∈ (0,∞) and NN(x) = GN , for all x ∈ V .
Infection: αN log(N)→∞ and αN → 0. (macroscopic killings).

Initial density: ρN0
(d)−−→ p.

Then, (ρNk )k∈N
(d)−−−→ (h◦k(p))k∈N on compact time intervals.

Figure: Bifurcation diagram one species α = 0.

h(p)

=

{
1− e−βp if 0 ≤ p ≤ a0,

e−3βp

(1−e−βp)2
if a0 < p ≤ 1.

a0 explicit.
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Theorem (F., Linker & Remenik ’18)
Hypothesis:

Number of species: two.
Space: GN uniform random 3-regular graphs with N vertices.
Offspring: β(i) ∈ (0,∞) and NN(x) = GN , for all x ∈ V .
Infection: αN(i) log(N)→∞ and αN(i)→ α(i) ∈ [0, 1]. (microscopic
killings too).

Initial density: ~ρN0
(d)−−→ ~p.

Then, (~ρNk )k∈N
(d)−−−→ (~h◦k~α (~p))k∈N on compact time intervals.

Figure: Bifurcation diagram one species α = 0.1.

hα(p)

=

(
1−

√
1− 4(1− α)(1− e−βp)e−βp

)3

8(1− α)2(1− e−βp)2

(a) BD Multi-type β(1) = 1.99log(2) and
~α = (0.01, 0.2).

(b) B.D. Mult-type β(1) = 2.6 log(2) and
~α = (0.01, 0.1).
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Theorem (F, Linker & Remenik ’18)
There are explicit regions of the parameter space where the dynamical system
shows: domination (red and blue) or coexistence (purple).

1.0 1.5 2.0 2.5
1.0

1.5

2.0

2.5

(1-α(1))β(1)

(1
-
α
(2
))
β
(2
)

Theorem (F, Linker & Remenik ’18)
In these regions, the stochastic system behaves as the dynamical system:

When there is domination, the weaker type dies out in time O(log(N)).

When there is coexistence, both types survive for at least e
√

log(N).
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Tree-decorated planar maps: combinatorial results.
with A. Sepúlveda.

Figure: Uniform random tree of size 20 containing the origin on Z2.
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Tree-decorated planar maps: combinatorial results.
with A. Sepúlveda.

Figure: Dynamic on trees of size 10000.
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Tree-decorated planar maps: combinatorial results.
with A. Sepúlveda.

(a) tree-decorated quad. 10 faces, tree of size 6.

(b) Unif. tree-decorated quad. 90k faces and tree
of size 500.
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Map

A face= A connected component of
the complement of the edges.

The root-edge= distinguished half
edge.

The root-face= face to the left of
the root-edge.

Degree of a face= number of
adjacent edges to it.

degf = 6

degf = 4

degf = 4
root-face

root-edge

vertices
edge

= 6=

Figure: Same graph, different embeddings on the sphere.
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Spanning tree-decorated maps

A (f , a) tree-decorated map is a pair
(m, t) where:

m is a rooted map with f faces.
t is a submap of m (t ⊂M m).
t is a tree with a edges.
t contains the root-edge of m.

It interpolates: In the case of quadrangulations
a = 1→ quadrangulations with f faces. [Tutte ’60, Bender & Canfield ’94,
Cori-Vauquelin-Schaeffer ’98, Schaeffer ’97, Bettinelli ’15]

a = f + 1→ spanning-tree decorated quadrangulations with f faces. [Mullin
’67, Walsh & Lehman ’72, Cori et al ’86; Bernardi ’06]
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Counting results

Theorem (F. & Sepúlveda ’19)
The number of (f , a) tree-decorated quadrangulations is

3f−a
(2f + a− 1)!

(f + 2a)!(f − a + 1)!

2a
a + 1

(
3a

a, a, a

)
We also count

(f , a) tree-decorated triangulations.
Maps (triangulations and quadrangulations) with a simple boundary
decorated in a subtree.
Forest-decorated maps.
"Tree-decorated general maps".
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Planar trees

A planar tree is a rooted map with one
face.

Number of planar trees with a edges

Ca =
1

a + 1

(
2a
a

)
.
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Quadrangulations with a simple boundary

Number of rooted-quadrangulations
with:

f internal faces.
simple boundary of size 2p
(root-face of degre 2p).

3f−p2p
(f + 2p)(f + 2p − 1)

(
2f + p − 1
f − p + 1

)(
3p
p

)
.

Analytic [Bouttier & Guitter ’09] and bijective
[Bernardi & Fusy ’17].
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Bijection

Theorem (F. & Sepúlveda ’19)
The set of (f , a) tree-decorated maps is in bijection with
(the set of maps with a simple boundary of size 2a and f interior faces)
× (the set of trees with a edges).
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Remarks and extensions

The bijection makes a correspondence between:

[Tree-decorated map] [Map with a boundary, Tree]
Faces of degree q ←→ Internal faces of degree q
Internal vertices of degree d ←→ Internal vertices of degree d
Internal edges ←→ Internal edges
Corner of the tree ←→ Boundary vertices.

We can restrict the bijection to q-angulations.
It can be restricted to some subfamilies of trees:

1 Binary tree- decorated Maps.
2 SAW decorated maps (Already done by Caraceni & Curien).
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Tree-decorated planar maps: local limits. with A. Sepúlveda.

Notation: qaf= Unif. tree-decorated quad. with f faces and a tree of size a.
Consider:

Br (m) = ball of radius r from the root-vertex.
M= set of (locally finite) maps.

We endowedM with the (local) topology induced by

dloc(m1,m2) = (1 + sup{r ≥ 0 : Br(m1) = Br(m2)})−1

Proposition
The space (M, dloc) is Polish (metric, separable and complete).
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Result
Notation: qaf= Unif. tree-decorated quad. with f faces and a tree of size a.

Theorem (F. & Sepúlveda ’19+)

qaf
(d)−−−−−−−→

local,f→∞
qa∞

(d)−−−−−−−→
local,a→∞

q∞∞
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Uniform Trees

ta= Unif. tree with a edges.

Theorem (Kesten ’86)

ta
(d)−−−−−→
local

t∞

t∞ construction.
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Uniform quadrangulation with a boundary

qSf ,p= Unif. quadrangulations with a simple boundary of size 2p and f faces.

Theorem (Curien & Miermont ’12)

qSf ,p
(d)−−−−−−−→

local(f→∞)
qS∞,p

(d)−−−−−−−→
local(p→∞)

UIHPQS

Figure: sketch of a UIHPQS .
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Local limit results

Notation: qaf= Unif. tree-decorated quad. with f faces and a tree of size a.

Theorem (F. & Sepúlveda ’19+)

qaf
(d)−−−−−−−→

local,f→∞
qa∞

(d)−−−−−−−→
local,a→∞

q∞∞

q∞∞ is the "gluing" of t∞ and UIHPQS .
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+

∞< ∞

< ∞
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< ∞

< ∞
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Definition
Given T, a distribution µ is said to be invariant if ηt ∼ µ for any t ≥ 0, when
η0 ∼ µ.

ηt ∼ µ

ηt+dt ∼ µ

L

Exp(T[ ])|

Well definition of PS:

Can we define a Markov process with jumps according to T?

When well defined, there is a correspondence between GT Markovian generator
and {Pt}t≥0 Markovian semigroup; and the following are satisfied

µt f = µ0Pt f

∂µt f

∂t
=

∫
GTfdµt
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Application
Full characterization of (M,T) such that M is invariant by T. Case 2 colors
(κ = 2), memory 1 (m = 1) and range 2 (L = 2).
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Grobner’s basis

Generalization of Gaussian elimination for linear systems.
• For a set of polynomials P, the Grobner basis finds a "minimal representation"
of the ideal generated by this set in the ring of polynomials with coefficients in a
field (here C).

•"Minimal representation" = "small" generator of the ideal.

•"Small"= with respect to a certain order of monomials. Basically a way to do
the sequence of divisions of polynomials (which is a generalized version of
Gaussian division).

•If the result of a Grobner basis gives {1}, it means that there is no solution (in a
sense 1=0 generates the ideal).

• If the result is different that the constant, then it assures the existence of
solutions in the field C.
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Multi-dimensional case: invariance of product measures

Exp
(
T 0 1

1 0
1 1
1 0

) ηt+dt ∼ ρZ
2

ηt ∼ ρZ
2

Consider the three following sets:

Γ0 = {(0, 0), (0, 1), (1, 0)}, Γ1 = Γ0 ∪ {(2, 0)}, Γ2 = Γ1 ∪ {(1, 1)}.

Theorem 2D
Let κ < +∞. Consider ρ a probability distribution with full support on Eκ and
T =

[
Tuv
]
u,v∈ESq

κ
a JRM indexed by 2x2 squares. The measure ρZ

2
is invariant by

T on Z2 iff the two following conditions hold simultaneously:
NLineρ,T ≡ 0 on EΓ0

κ ,
for any x ∈ EΓ2

κ ,

NLineρ,T(x)− NLineρ,T(x(Γ1)) = 0. (1)
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Scaling limit conjecture

Conjecture (F. & Sepúlveda ’19+)
Let (m, t) be a Unif. tree-decorated map with f faces and boundary of size a(f )
with a(f ) = O(f α). Depending on α as f →∞

(
(m, t),

dmap

f β

)
(d)−−−−→
GH


Brownian map if α < 1/2, β = 1/4(Proved)
Shocked map if α = 1/2, β = 1/4(In progress)
Tree-decorated map if α > 1/2,

β =
(
2χ− 1

2

)
α− χ+ 1

2
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Shocked map
Shocked map properties:

It is not degenerated (Proved).
It should be the gluing of a Brownian disk and a CRT.
Hausdorff dim. 4 (Proved).
The tree has Hausdorff dim. 2 (In progress, ≤ 2 proved).
Homeomorphic to S2. (Proved).

Figure: Unif. (90k,500) tree-decorated quadrangulation.
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Brownian Disk

qf ,p= Unif. quadrangulations with boundary 2p and f faces.
For a sequence (p(f ))f∈N, define p̄ = lim p(f )f −1/2 as f →∞.

Theorem (Scaling limit (Bettinelli ’15))

(
qf ,p(f ),

dmap

s(f , p(f ))

)
(d)−−−−→
GH


Brownian map if s(f , p(f )) = f 1/4 and p̄ = 0
Brownian disk if s(f , p(f )) = f 1/4 and p̄ ∈ (0,+∞)

CRT if s(f , p(f )) = 2p(f )1/2 and p̄ =∞

Properties (Bettinelli & Miermont
’15)
Brownian disk properties

The boundary is simple.
Hausdorff dim. 4 in the interior, 2
in the boundary.
Homeomorphic to the disk 2d .

Unif. quad. with 30k interior faces and boundary 173.
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Brownian Disk

qSf ,p= Unif. quadrangulations with simple boundary 2p and f faces.
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