Some models at the interface of probability theory and combinatorics: particle systems and maps.

Luis Fredes

PhD defense.
Under the supervision of J.F. Marckert.
(1) Invariant measures of discrete interacting particles systems: algebraic aspects.
(2) Survival and coexistence for spatial population models with forest fire epidemics.
(3) Tree-decorated planar maps: combinatorial results.
(4) Tree-decorated planar maps: local limits.

Invariant measures of discrete interacting particles systems: algebraic aspects.

Example: TASEP

$\eta_{t+d t}$

Invariant measures of discrete interacting particles systems: algebraic aspects.

Example: TASEP

$\eta_{t+d t}$

$\operatorname{Exp}(1)$

Particle systems of our interests

$$
\eta_{t+d t}
$$

$$
\operatorname{Exp}(T[00 \mid 000])
$$

η_{t}

Our setting: model depends on 4 parameters:

- Graph $G=(V, E)$ belonging to $\mathbb{Z}^{d}, \mathbb{Z} / n \mathbb{Z}$.
- Set of $\kappa \in \mathbb{N} \cup\{\infty\}$ colors

$$
E_{\kappa}=\{0,1, \ldots, \kappa-1\} .
$$

- Dependence neighborhood $L \geq 2$.
- Jump rate matrix

$$
\mathrm{T}=\left[\mathrm{T}_{[\boldsymbol{u} \mid \boldsymbol{w}]}\right]_{\left\{\boldsymbol{u}, \boldsymbol{w} \in E_{k}^{L}\right\}} .
$$

Notation:

$$
\eta_{t}(\boldsymbol{v}) \rightarrow \text { color of vertex } \boldsymbol{v} \text { at time } \boldsymbol{t}
$$

Our setting: model depends on 4 parameters:

- Graph $G=(V, E)$ belonging to $\mathbb{Z}^{d}, \mathbb{Z} / n \mathbb{Z}$.
- Set of $\kappa \in \mathbb{N} \cup\{\infty\}$ colors

$$
E_{\kappa}=\{0,1, \ldots, \kappa-1\} .
$$

- Dependence neighborhood $L \geq 2$.
- Jump rate matrix

$$
\mathrm{T}=\left[\mathrm{T}_{[\boldsymbol{u} \mid \boldsymbol{w}]}\right]_{\left\{\boldsymbol{u}, \boldsymbol{w} \in E_{k}^{L}\right\}} .
$$

Notation:

$$
\eta_{t}(\boldsymbol{v}) \rightarrow \text { color of vertex } \boldsymbol{v} \text { at time } \boldsymbol{t}
$$

Definition

Given T , a distribution μ is said to be invariant if $\eta_{t} \sim \mu$ for any $t \geq 0$, when $\eta_{0} \sim \mu$.

Some references:

- Well definition of PS given T:
(1) $\kappa<\infty$, always well defined. [Liggett '85].
(3) $\kappa=\infty$, not always. Some techniques:
- Graphic method [Harris 72'].
- Functional analysis [Liggett '73].
- Stochastic domination [Andjel '82].
- Existence of invariant measures for specific PS . [Andjel '82].
- Computation of invariant measures for specific PS. [Derrida et al '93, Blythe \& Evans '07...].
- Uniqueness / ergodicity?

Convergence to the invariant measure for specific PS? Rate of convergence? [Benjamini et al '05, Labbé \& Lacoin '16...].

Our main question:

Given a (class of) measure, is it possible to characterize the T's for which this measure is invariant?

- A classical sufficient condition for invariance of product measures

Detailed balance equations

The product measure $\rho^{\mathbb{Z}}$ is invariant by T on \mathbb{Z} if

$$
\rho_{a} \rho_{b} T_{[a, b \mid u, v]}=\rho_{u} \rho_{v} \top_{[u, v \mid a, b]} \quad \forall a, b, u, v \in E_{\kappa}
$$

- The product measure case is partially known. [Fajfrová et al '16].

Our main question:

Is it possible to characterize the T for which the distribution of a Markov chain is invariant ?"

Markov Distribution

A process X has a Markov distribution (ρ, M), with Markov Kernel (MK) M of memory $m=1$ and initial distribution ρ, if for any $\boldsymbol{x} \in E_{\kappa}^{n+1}$

$$
\mathbb{P}(X \llbracket 0, n \rrbracket=\boldsymbol{x})=\rho_{x_{0}} \prod_{j=0}^{n-1} M_{x_{j}, x_{j+1}}
$$

Markov Distribution

A process X has a Markov distribution (ρ, M), with Markov Kernel (MK) M of memory $m=1$ and initial distribution ρ, if for any $\boldsymbol{x} \in E_{\kappa}^{n+1}$

$$
\mathbb{P}(X \llbracket 0, n \rrbracket=\boldsymbol{x})=\rho_{x_{0}} \prod_{j=0}^{n-1} M_{x_{j}, x_{j+1}}
$$

Gibbs Distribution

A vector $\left(X_{k}, k \in \mathbb{Z} / n \mathbb{Z}\right)$ is said to have a Gibbs distribution $G(M)$ characterized by a MK M, if for any $\boldsymbol{x} \in E_{\kappa}^{n}$,

$$
\mathbb{P}(X \llbracket 0, n-1 \rrbracket=\boldsymbol{x})=\frac{\prod_{j=0}^{n-1} M_{x_{j}, x_{j+1} \bmod n}}{\operatorname{Trace}\left(M^{n}\right)}
$$

$\mathbb{P}(X \llbracket 0,2 \rrbracket=x)=$ $\rho_{\times_{0}} M_{x_{0}, x_{1}} M_{x_{1}, x_{2}}$

$$
\mathbb{P}(X \llbracket 0,2 \rrbracket=x) \propto
$$

Invariance schemes

Invariance schemes

Main Theorem (F. \& Marckert '17)

Let κ be finite, $L=2$ and $m=1$. If $M>0$ (strictly positive entries) then the following statements are equivalent:
(1) (ρ, M) is invariant by T on \mathbb{Z}.
(c) $G(M)$ is invariant by T on $\mathbb{Z} / 7 \mathbb{Z}$.
(3) $G(M)$ is invariant by T on $\mathbb{Z} / n \mathbb{Z}$, for all $n \geq 3$.

Elements of the proof: algebraization

Suppose $\mu_{t}=(\rho, M)$. We define
$\operatorname{Line}_{n}^{M, \boldsymbol{T}}(x):=\frac{\partial}{\partial t} \mu_{t}\left(x_{1} x_{2} \ldots x_{n-1} x_{n}\right)$
$=\quad$ Mass creation rate of x

- Mass destruction rate of x

Definition

A (ρ, M) MD under its invariant distribution is said to be invariant by T on the line when Line $n_{n}^{M, T} \equiv 0$, for all $n \in \mathbb{N}$.

Elements of the proof: algebraization

Suppose $\mu_{t}=(\rho, M)$. We define

$$
\operatorname{Line}_{n}^{M, \boldsymbol{T}}(x):=\frac{\partial}{\partial t} \mu_{t}\left(x_{1} x_{2} \ldots x_{n-1} x_{n}\right)
$$

$$
=\sum_{\substack{x \\ x_{n+1}, 1, x_{0}, x_{n+2} \in E_{k}}} \sum_{j=0}^{n} \sum_{\substack{u, v) \in E_{k}^{2}}}\left(\mathrm{~T}_{\left[u, v \mid x_{j}, x_{j+1}\right]}\left(\rho_{x_{-1}} \prod_{\substack{-1 \leq k \leq n+1 \\ k \notin\{j-1, j, j+1\}}} M_{x_{k}, x_{k+1}}\right) M_{x_{j-1}, u} M_{u, v} M_{v, x_{j+2}}\right.
$$

$$
\left.-\mathrm{T}_{\left[x_{j}, x_{j+1} \mid u, v\right]}\left(\rho_{x_{-1}} \prod_{k=-1}^{n+1} M_{x_{k}, x_{k+1}}\right)\right)
$$

Definition

A (ρ, M) MD under its invariant distribution is said to be invariant by T on the line when Line $n_{n}^{M, T} \equiv 0$, for all $n \in \mathbb{N}$.

Elements of the proof: algebraization

Suppose $\mu_{t}=(\rho, M)$. We define

$$
\begin{aligned}
& \operatorname{Line}_{n}^{M, T}(x):=\frac{\partial}{\partial t} \mu_{t}\left(x_{1} x_{2} \ldots x_{n-1} x_{n}\right) \\
& =\sum_{\substack{x_{n-1}, x_{0} \\
x_{n+1}, x_{n+2} \in E_{k}}} \sum_{j=0}^{n}\left(\rho_{x_{-1} 1} \prod_{k=-1}^{n+1} M_{x_{k}, x_{k+1}}\right) \times \\
& \quad \underbrace{\left(\left(\sum_{(u, v) \in E_{k}^{2}} \mathrm{~T}_{\left[u, v \mid x_{j}, x_{j+1}\right]} \frac{M_{x_{j-1}, u} M_{u, v} M_{v, x_{j+2}}}{M_{x_{j-1}, x_{j}} M_{x_{j}, x_{j+1}} M_{x_{j+1}, x_{j+2}}}\right)-\mathrm{T}_{\left[x_{j}, x_{j+1}\right]}^{\text {out }}\right)}_{Z_{x_{j-1}, x_{j}, x_{j+1}, x_{j+2}}}
\end{aligned}
$$

Definition

A (ρ, M) MD under its invariant distribution is said to be invariant by T on the line when Line ${ }_{n}^{M, T} \equiv 0$, for all $n \in \mathbb{N}$.

Elements of the proof: algebraization

Suppose $\mu_{t}=(\rho, M)$. We define for $M>0$
$\operatorname{NLine}_{n}^{M, T}(x):=\frac{\operatorname{Line}_{n}^{M, T}(x)}{\prod_{i=1}^{n-1} M_{x_{i}, x_{i+1}}}$
$=\sum_{\substack{x_{-1}, \times_{0}, x_{n+1}, x_{n}+2}} \sum_{j=0}^{n}\left(\rho_{x_{k}} M_{x_{-1}}, M_{0} M_{x_{0}, x_{1}} \times Z_{x_{j-1}, x_{j}, x_{j+1}, x_{j+2}} \times M_{x_{n}, x_{n+1}} M_{x_{n+1}, x_{n+2}}\right)$

Definition

A (ρ, M) MD under its invariant distribution is said to be invariant by T on the line when $\operatorname{Line}_{n}^{M, T} \equiv 0$, for all $n \in \mathbb{N}$.

Important message:

- Line: If $M>0$, then (ρ, M) is invariant by T on $\mathbb{Z} \Longleftrightarrow$

$$
\operatorname{NLine}_{n}^{M, T}(x)=Z_{x_{1}, x_{2}, x_{3}}^{L}+\sum_{j=2}^{n-2} Z_{x_{j-1}, x_{j}, x_{j+1}, x_{j+2}}+Z_{x_{n-2}, x_{n-1}, x_{n}}^{R}=0 \quad \text { for all } n \in \mathbb{N}
$$

- Cycle of length n : If $M>0$, then $G(M)$ is invariant by T on $\mathbb{Z} / 7 \mathbb{Z}$

$$
\operatorname{NCycle}_{n}^{M, T}(x)=\sum_{j=0}^{n-1} Z_{x_{j-1}, x_{j}, x_{j+1}}, x_{j+2}=0
$$

where $\bar{i}:=i \bmod n$

Sketch of proof

1) \Longrightarrow 2) in main theorem: $M>0$
2) (ρ, M) is invariant by T on $\mathbb{Z} \Longrightarrow 2) G(M)$ is invariant by T on $\mathbb{Z} / 7 \mathbb{Z}$ I

$$
\text { NLine }_{n}^{M, T} \equiv 0 \quad \forall n \in \mathbb{N} \Longrightarrow \operatorname{NCycle}_{7}^{M, T} \equiv 0
$$

Consider $\boldsymbol{x} \in E_{\kappa}^{7}$ and $\boldsymbol{w}=\underbrace{\boldsymbol{x} \ldots \boldsymbol{x}}_{\ell \text { times }}$

$$
\operatorname{NLine}_{7 \ell}^{M, T}(\boldsymbol{w})=\underbrace{\text { Bound. terms }}_{O(1)}+\ldots \quad=0
$$

Sketch of proof

1) \Longrightarrow 2) in main theorem: $M>0$
2) (ρ, M) is invariant by T on $\mathbb{Z} \Longrightarrow 2) G(M)$ is invariant by T on $\mathbb{Z} / 7 \mathbb{Z}$ I

$$
\text { NLine }_{n}^{M, T} \equiv 0 \quad \forall n \in \mathbb{N} \Longrightarrow \text { NCycle }_{7}^{M, T} \equiv 0
$$

Consider $\boldsymbol{x} \in E_{\kappa}^{7}$ and $\boldsymbol{w}=\underbrace{\boldsymbol{x} \ldots \boldsymbol{x}}_{\ell \text { times }}$
$\mathrm{NLine}_{7 \ell}^{M, T}(w)=\underbrace{\text { Bound. terms }}_{O(1)}+\mathrm{NCycle}_{7}^{M, T}(x)+\ldots=0$

Sketch of proof

1) \Longrightarrow 2) in main theorem: $M>0$
2) (ρ, M) is invariant by T on $\mathbb{Z} \Longrightarrow 2) G(M)$ is invariant by T on $\mathbb{Z} / 7 \mathbb{Z}$ I

$$
\text { NLine }_{n}^{M, T} \equiv 0 \quad \forall n \in \mathbb{N} \Longrightarrow \operatorname{NCycle}_{7}^{M, T} \equiv 0
$$

Consider $\boldsymbol{x} \in E_{\kappa}^{7}$ and $\boldsymbol{w}=\underbrace{\boldsymbol{x} \ldots \boldsymbol{x}}_{\ell \text { times }}$
$\mathrm{NLine}_{7 \ell}^{M, T}(\boldsymbol{w})=\underbrace{\text { Bound. terms }}_{O(1)}+2 \mathrm{NCycle}_{7}^{M, T}(x)+\ldots=0$

Sketch of proof

1) \Longrightarrow 2) in main theorem: $M>0$
2) (ρ, M) is invariant by T on $\mathbb{Z} \Longrightarrow 2) G(M)$ is invariant by T on $\mathbb{Z} / 7 \mathbb{Z}$ I

$$
\text { NLine }_{n}^{M, T} \equiv 0 \quad \forall n \in \mathbb{N} \Longrightarrow \operatorname{NCycle}_{7}^{M, T} \equiv 0
$$

Consider $\boldsymbol{x} \in E_{\kappa}^{7}$ and $\boldsymbol{w}=\underbrace{\boldsymbol{x} \ldots \boldsymbol{x}}_{\ell \text { times }}$

NLine $_{7 \ell}^{M, T}(w)=\underbrace{\text { Bound. terms }}_{O(1)}+\ell \mathrm{NCycle}_{7}^{M, T}(x)=0$

Theorem- Strongest form (F. \& Marckert '17)

Let E_{κ} be finite, $L \geq 2, m \in \mathbb{N}$. If $M>0$ (strictly positive entries) then the following statements are equivalent:
(1) (ρ, M) is invariant by T on \mathbb{Z}.
(c) $G(M)$ is invariant by T on $\mathbb{Z} / h \mathbb{Z}$.
(0) $G(M)$ is invariant by T on $\mathbb{Z} / n \mathbb{Z}$, for all $n \geq m+L$.
with $h:=4 m+2 L-1$
The system of equations in 2) is finite, of degree h in M and linear in T.

Application: the contact process

$\eta_{t+d t}$

Application: the contact process

$\eta_{t+d t}$
 ?

Corollary (F. \& Marckert '17)

The contact process does not have a non-trivial MD of any memory $m \geq 0$ as invariant distribution.

Algorithm

We give an algorithm to compute the set of $M>0$ invariant by a given T. Case finite number of colors $(\kappa<\infty)$, memory $1(m=1)$ and range $2(L=2)$.

- Find the set of all ν satisfying (linear algebra)

$$
\begin{aligned}
& \sum_{u, v \in E_{\kappa}}\left(\nu_{c, u, v} \mathrm{~T}_{[u, v \mid a, b]}+\nu_{a, u, v} \mathrm{~T}_{[u, v \mid b, c]}+\nu_{b, u, v} \mathrm{~T}_{[u, v \mid c, a]}\right) \\
& =\nu_{a, b, c}\left(\mathrm{~T}_{[a, b]}^{\text {out }}+\mathrm{T}_{[b, c]}^{\text {out }}+\mathrm{T}_{[c, a]}^{\text {out }}\right) .
\end{aligned}
$$

- Property: For each ν there exists at most one M satisfying

$$
\nu_{x, y, z}=\frac{M_{x, y} M_{y, z} M_{z, x}}{\text { Trace } M^{3}}
$$

When M exists, compute it (algebra).

- Test if M satisfies $\mathrm{NCycle}_{7}^{M, T} \equiv 0$ (linear algebra/Gröbner).

Corollary

There exists a jump rate matrix T which possesses some hidden Markov chain as invariant distribution.

Idea:

Invariant product measures

Detailed balance equations

The product measure $\rho^{\mathbb{Z}}$ is invariant by T on \mathbb{Z} if

$$
\rho_{a} \rho_{b} \top_{[a, b \mid u, v]}=\rho_{u} \rho_{v} \top_{[u, v \mid a, b]} \quad \forall a, b, u, v \in E_{\kappa}
$$

Theorem (F. \& Marckert '17)

Let $\kappa<\infty$ and $L=2$. If ρ is a measure with support E_{κ} then the following are equivalent:
(1) The product measure $\rho^{\mathbb{Z}}$ is invariant by T on \mathbb{Z}.
(2) The product measure $\rho^{\mathbb{Z} / 3 \mathbb{Z}}$ is invariant by T on $\mathbb{Z} / 3 \mathbb{Z}$.

$$
\begin{aligned}
Z_{a, b, c, t} & =\sum_{u, v \in E_{\kappa}}\left(\frac{\rho_{u} \rho_{v}}{\rho_{b} \rho_{c}} \mathrm{~T}_{[u, v \mid b, c]}-\mathrm{T}_{[b, c \mid u, v]}\right) \\
& =\sum_{u, v \in E_{\kappa}} \frac{1}{\rho_{a} \rho_{b}}\left(\rho_{u} \rho_{v} T_{[u, v \mid b, c]}-\rho_{b} \rho_{c} T_{[b, c \mid u, v]}\right)
\end{aligned}
$$

2) $\Longleftrightarrow Z_{a, b}+Z_{b, c}+Z_{c, a}=0, \forall a, b, c \in E_{\kappa}$ and $(\mathrm{DBE}) \Longrightarrow Z \equiv 0$.

Survival and coexistence for spatial population models with forest fire epidemics.

Motivation from math-biology: Find models of population dynamics achieving biodiversity.

References:

- Predators [Mimura \& Kan-on '86, Hofbauer \& Sigmund '89, Schreiber '97.]
- Random fluctuations in the environment.[Mao, Marion \& Renshaw '02, Zhu and Yin '09.]
- Random diseases.[Holt \& Pickering '85, Saenz \& Hethcote '06.]
- Crowding effect.[Sevenster '96, Hartley \& Shorrocks '02, Gavina et al '18.]

Our contribution: Design + study of a stochastic model of population dynamics with long-time coexistence.

Gypsy moth infestation model.

- One year life's cycle. Discrete time.
- When population density is too high, it gets attacked by epidemics. Forest fires.

Durrett \& Remenik '09.

Our work: Multi-type model

Ohio Department of Agriculture

Our Multi-type model:

- Space: Graph $G_{N}=\left(V_{N}, E_{N}\right)$ on N vertices.
- Configurations: $\eta_{k}=\left\{\eta_{k}(v)\right\}_{v \in V_{N}}$ global state of the system at time k. $\boldsymbol{\eta}_{\boldsymbol{k}}(\boldsymbol{v}) \rightarrow$ type of (the particle at) \boldsymbol{v} at time \boldsymbol{k}.
- Initial configuration: η_{0}.

Evolution: Two consecutive steps (per unit of time).

Our Multi-type model:

- Space: Graph $G_{N}=\left(V_{N}, E_{N}\right)$ on N vertices.
- Configurations: $\eta_{k}=\left\{\eta_{k}(v)\right\}_{v \in V_{N}}$ global state of the system at time k. $\boldsymbol{\eta}_{\boldsymbol{k}}(\boldsymbol{v}) \rightarrow$ type of (the particle at) \boldsymbol{v} at time \boldsymbol{k}.
- Initial configuration: η_{0}.

Evolution: Two consecutive steps (per unit of time).

- Growth: A site x of type i gives birth to Poisson($\beta(i)$) individuals, spreads them randomly on a neighborhood $\mathcal{N}_{N}(x)$ and then dies. The type of $x=$ the type of a unif. choice over the individuals x received.

Our Multi-type model:

- Space: Graph $G_{N}=\left(V_{N}, E_{N}\right)$ on N vertices.
- Configurations: $\eta_{k}=\left\{\eta_{k}(v)\right\}_{v \in V_{N}}$ global state of the system at time k.

$$
\boldsymbol{\eta}_{\boldsymbol{k}}(\boldsymbol{v}) \rightarrow \text { type of (the particle at) } \boldsymbol{v} \text { at time } \boldsymbol{k} .
$$

- Initial configuration: η_{0}.

Evolution: Two consecutive steps (per unit of time).

- Growth: A site x of type i gives birth to Poisson($\beta(i)$) individuals, spreads them randomly on a neighborhood $\mathcal{N}_{N}(x)$ and then dies. The type of $x=$ the type of a unif. choice over the individuals x received.

Our Multi-type model:

- Space: Graph $G_{N}=\left(V_{N}, E_{N}\right)$ on N vertices.
- Configurations: $\eta_{k}=\left\{\eta_{k}(v)\right\}_{v \in V_{N}}$ global state of the system at time k.

$$
\boldsymbol{\eta}_{\boldsymbol{k}}(\boldsymbol{v}) \rightarrow \text { type of (the particle at) } \boldsymbol{v} \text { at time } \boldsymbol{k} .
$$

- Initial configuration: η_{0}.

Evolution: Two consecutive steps (per unit of time).

- Growth: A site x of type i gives birth to Poisson($\beta(i)$) individuals, spreads them randomly on a neighborhood $\mathcal{N}_{N}(x)$ and then dies. The type of $x=$ the type of a unif. choice over the individuals x received.

Our Multi-type model:

- Space: Graph $G_{N}=\left(V_{N}, E_{N}\right)$ on N vertices.
- Configurations: $\eta_{k}=\left\{\eta_{k}(v)\right\}_{v \in V_{N}}$ global state of the system at time k.

$$
\boldsymbol{\eta}_{\boldsymbol{k}}(\boldsymbol{v}) \rightarrow \text { type of (the particle at) } \boldsymbol{v} \text { at time } \boldsymbol{k} .
$$

- Initial configuration: η_{0}.

Evolution: Two consecutive steps (per unit of time).

- Growth: A site x of type i gives birth to Poisson($\beta(i)$) individuals, spreads them randomly on a neighborhood $\mathcal{N}_{N}(x)$ and then dies. The type of $x=$ the type of a unif. choice over the individuals x received.

Our Multi-type model:

- Space: Graph $G_{N}=\left(V_{N}, E_{N}\right)$ on N vertices.
- Configurations: $\eta_{k}=\left\{\eta_{k}(v)\right\}_{v \in V_{N}}$ global state of the system at time k.

$$
\boldsymbol{\eta}_{\boldsymbol{k}}(\boldsymbol{v}) \rightarrow \text { type of (the particle at) } \boldsymbol{v} \text { at time } \boldsymbol{k} .
$$

- Initial configuration: η_{0}.

Evolution: Two consecutive steps (per unit of time).

- Growth: A site x of type i gives birth to Poisson($\beta(i)$) individuals, spreads them randomly on a neighborhood $\mathcal{N}_{N}(x)$ and then dies. The type of $x=$ the type of a unif. choice over the individuals x received.

Our Multi-type model:

- Space: Graph $G_{N}=\left(V_{N}, E_{N}\right)$ on N vertices.
- Configurations: $\eta_{k}=\left\{\eta_{k}(v)\right\}_{v \in V_{N}}$ global state of the system at time k.

$$
\boldsymbol{\eta}_{\boldsymbol{k}}(\boldsymbol{v}) \rightarrow \text { type of (the particle at) } \boldsymbol{v} \text { at time } \boldsymbol{k} .
$$

- Initial configuration: η_{0}.

Evolution: Two consecutive steps (per unit of time).

- Growth: A site x of type i gives birth to Poisson($\beta(i)$) individuals, spreads them randomly on a neighborhood $\mathcal{N}_{N}(x)$ and then dies. The type of $x=$ the type of a unif. choice over the individuals x received.

- Epidemic: Each site x of type i is infected with probability $\alpha_{N}(i)$. In this case, the infection wipes out the entire connected component of x with the same type as x.

Our Multi-type model:

- Space: Graph $G_{N}=\left(V_{N}, E_{N}\right)$ on N vertices.
- Configurations: $\eta_{k}=\left\{\eta_{k}(v)\right\}_{v \in V_{N}}$ global state of the system at time k.

$$
\boldsymbol{\eta}_{\boldsymbol{k}}(\boldsymbol{v}) \rightarrow \text { type of (the particle at) } \boldsymbol{v} \text { at time } \boldsymbol{k} .
$$

- Initial configuration: η_{0}.

Evolution: Two consecutive steps (per unit of time).

- Growth: A site x of type i gives birth to Poisson($\beta(i)$) individuals, spreads them randomly on a neighborhood $\mathcal{N}_{N}(x)$ and then dies. The type of $x=$ the type of a unif. choice over the individuals x received.

- Epidemic: Each site x of type i is infected with probability $\alpha_{N}(i)$. In this case, the infection wipes out the entire connected component of x with the same type as x.

Our Multi-type model:

- Space: Graph $G_{N}=\left(V_{N}, E_{N}\right)$ on N vertices.
- Configurations: $\eta_{k}=\left\{\eta_{k}(v)\right\}_{v \in V_{N}}$ global state of the system at time k.

$$
\boldsymbol{\eta}_{\boldsymbol{k}}(\boldsymbol{v}) \rightarrow \text { type of (the particle at) } \boldsymbol{v} \text { at time } \boldsymbol{k} .
$$

- Initial configuration: η_{0}.

Evolution: Two consecutive steps (per unit of time).

- Growth: A site x of type i gives birth to Poisson($\beta(i)$) individuals, spreads them randomly on a neighborhood $\mathcal{N}_{N}(x)$ and then dies. The type of $x=$ the type of a unif. choice over the individuals x received.

- Epidemic: Each site x of type i is infected with probability $\alpha_{N}(i)$. In this case, the infection wipes out the entire connected component of x with the same type as x.

Our Multi-type model:

- Space: Graph $G_{N}=\left(V_{N}, E_{N}\right)$ on N vertices.
- Configurations: $\eta_{k}=\left\{\eta_{k}(v)\right\}_{v \in V_{N}}$ global state of the system at time k.

$$
\boldsymbol{\eta}_{\boldsymbol{k}}(\boldsymbol{v}) \rightarrow \text { type of (the particle at) } \boldsymbol{v} \text { at time } \boldsymbol{k} .
$$

- Initial configuration: η_{0}.

Evolution: Two consecutive steps (per unit of time).

- Growth: A site x of type i gives birth to Poisson($\beta(i)$) individuals, spreads them randomly on a neighborhood $\mathcal{N}_{N}(x)$ and then dies. The type of $x=$ the type of a unif. choice over the individuals x received.

- Epidemic: Each site x of type i is infected with probability $\alpha_{N}(i)$. In this case, the infection wipes out the entire connected component of x with the same type as x.

Our Multi-type model:

- Space: Graph $G_{N}=\left(V_{N}, E_{N}\right)$ on N vertices.
- Configurations: $\eta_{k}=\left\{\eta_{k}(v)\right\}_{v \in V_{N}}$ global state of the system at time k.

$$
\boldsymbol{\eta}_{\boldsymbol{k}}(\boldsymbol{v}) \rightarrow \text { type of (the particle at) } \boldsymbol{v} \text { at time } \boldsymbol{k} .
$$

- Initial configuration: η_{0}.

Evolution: Two consecutive steps (per unit of time).

- Growth: A site x of type i gives birth to Poisson($\beta(i)$) individuals, spreads them randomly on a neighborhood $\mathcal{N}_{N}(x)$ and then dies. The type of $x=$ the type of a unif. choice over the individuals x received.

- Epidemic: Each site x of type i is infected with probability $\alpha_{N}(i)$. In this case, the infection wipes out the entire connected component of x with the same type as x.

$$
\rho_{k}(i)=\frac{1}{N} \sum_{x \in V_{N}} \mathbb{1}_{\left\{\eta_{k}(x)=i\right\}}
$$

$$
\begin{aligned}
& \vec{\rho}_{k+1}=\left(\rho_{k+1}(1), \rho_{k+1}(2)\right) \\
& \quad=(1 / 10,1 / 10)
\end{aligned}
$$

Theorem (Durrett \& Remenik '09)

Hypothesis:

- Number of species: one.
- Space: G_{N} uniform random 3-regular graphs with N vertices.
- Offspring: $\beta \in(0, \infty)$ and $\mathcal{N}_{N}(x)=G_{N}$, for all $x \in V$.
- Infection: $\alpha_{N} \log (N) \rightarrow \infty$ and $\alpha_{N} \rightarrow 0$. (macroscopic killings).
- Initial density: $\rho_{0}^{N} \xrightarrow{(d)} p$.

Then,

$$
\left(\rho_{k}^{N}\right)_{k \in \mathbb{N}} \xrightarrow{(d)}\left(h^{\circ k}(p)\right)_{k \in \mathbb{N}} \quad \text { on compact time intervals. }
$$

$h(p)$
$= \begin{cases}1-e^{-\beta p} & \text { if } 0 \leq p \leq a_{0}, \\ \frac{e^{-3} \beta p}{\left(1-e^{-\beta p}\right)^{2}} & \text { if } a_{0}<p \leq 1 .\end{cases}$
a_{0} explicit.

Figure: Bifurcation diagram one species $\alpha=0$.

Theorem (F., Linker \& Remenik '18)

Hypothesis:

- Number of species: two.
- Space: G_{N} uniform random 3-regular graphs with N vertices.
- Offspring: $\beta(i) \in(0, \infty)$ and $\mathcal{N}_{N}(x)=G_{N}$, for all $x \in V$.
- Infection: $\alpha_{N}(i) \log (N) \rightarrow \infty$ and $\alpha_{N}(i) \rightarrow \alpha(i) \in[0,1]$. (microscopic killings too).
- Initial density: $\vec{\rho}_{0}^{N} \xrightarrow{(d)} \vec{p}$.

Then,

$$
\left(\vec{\rho}_{k}^{N}\right)_{k \in \mathbb{N}} \xrightarrow{(d)}\left(\vec{h}_{\vec{\alpha}}^{\circ k}(\vec{p})\right)_{k \in \mathbb{N}} \quad \text { on compact time intervals. }
$$

$$
\begin{aligned}
& h_{\alpha}(p) \\
& =\frac{\left(1-\sqrt{1-4(1-\alpha)\left(1-e^{-\beta p}\right) e^{-\beta p}}\right)^{3}}{8(1-\alpha)^{2}\left(1-e^{-\beta p}\right)^{2}}
\end{aligned}
$$

Figure: Bifurcation diagram one species $\alpha=0.1$.

Theorem (F., Linker \& Remenik '18)

Hypothesis:

- Number of species: two.
- Space: G_{N} uniform random 3-regular graphs with N vertices.
- Offspring: $\beta(i) \in(0, \infty)$ and $\mathcal{N}_{N}(x)=G_{N}$, for all $x \in V$.
- Infection: $\alpha_{N}(i) \log (N) \rightarrow \infty$ and $\alpha_{N}(i) \rightarrow \alpha(i) \in[0,1]$. (microscopic killings too).
- Initial density: $\vec{\rho}_{0}^{N} \xrightarrow{(d)} \vec{p}$.

Then,

$$
\left(\vec{\rho}_{k}^{N}\right)_{k \in \mathbb{N}} \xrightarrow{(d)}\left(\vec{h}_{\vec{\alpha}}^{\circ k}(\vec{p})\right)_{k \in \mathbb{N}} \quad \text { on compact time intervals. }
$$

(a) BD Multi-type $\beta(1)=1.99 \log (2)$ and $\vec{\alpha}=(0.01,0.2)$.

(b) B.D. Mult-type $\beta(1)=2.6 \log (2)$ and $\vec{\alpha}=(0.01,0.1)$.

Theorem (F, Linker \& Remenik '18)

There are explicit regions of the parameter space where the dynamical system shows: domination (red and blue) or coexistence (purple).

Theorem (F, Linker \& Remenik '18)

In these regions, the stochastic system behaves as the dynamical system:

- When there is domination, the weaker type dies out in time $O(\log (N))$.
- When there is coexistence, both types survive for at least $e^{\sqrt{\log (N)}}$.

Figure: Uniform random tree of size 20 containing the origin on \mathbb{Z}^{2}.

Figure: Dynamic on trees of size 10000.

Tree-decorated planar maps: combinatorial results.

(b) Unif. tree-decorated quad. 90 k faces and tree of size 500 .
(a) tree-decorated quad. 10 faces, tree of size 6.

Map

- A face $=\mathrm{A}$ connected component of the complement of the edges.
- The root-edge $=$ distinguished half edge.
- The root-face= face to the left of the root-edge.
- Degree of a face= number of adjacent edges to it.

Figure: Same graph, different embeddings on the sphere.

Spanning tree-decorated maps

A (f, a) tree-decorated map is a pair $(\mathfrak{m}, \mathfrak{t})$ where:

- \mathfrak{m} is a rooted map with f faces.
- \mathfrak{t} is a submap of $\mathfrak{m}\left(\mathfrak{t} \subset_{M} \mathfrak{m}\right)$.
- \mathfrak{t} is a tree with a edges.
- \mathfrak{t} contains the root-edge of \mathfrak{m}.

Spanning tree-decorated maps

A (f, a) tree-decorated map is a pair $(\mathfrak{m}, \mathfrak{t})$ where:

- \mathfrak{m} is a rooted map with f faces.
- \mathfrak{t} is a submap of $\mathfrak{m}\left(\mathfrak{t} \subset_{M} \mathfrak{m}\right)$.
- \mathfrak{t} is a tree with a edges.
- \mathfrak{t} contains the root-edge of \mathfrak{m}.

It interpolates: In the case of quadrangulations

- $a=1 \rightarrow$ quadrangulations with f faces. [Tutte ' 60 , Bender \& Canfield '94, Cori-Vauquelin-Schaeffer '98, Schaeffer '97, Bettinelli '15]
- $a=f+1 \rightarrow$ spanning-tree decorated quadrangulations with f faces. [Mullin '67, Walsh \& Lehman '72, Cori et al '86; Bernardi '06]

Counting results

Theorem (F. \& Sepúlveda '19)

The number of (f, a) tree-decorated quadrangulations is

$$
3^{f-a} \frac{(2 f+a-1)!}{(f+2 a)!(f-a+1)!} \frac{2 a}{a+1}\binom{3 a}{a, a, a}
$$

We also count

- (f, a) tree-decorated triangulations.
- Maps (triangulations and quadrangulations) with a simple boundary decorated in a subtree.
- Forest-decorated maps.
- "Tree-decorated general maps".

A planar tree is a rooted map with one face.

Number of planar trees with a edges

$$
\mathcal{C}_{a}=\frac{1}{a+1}\binom{2 a}{a} .
$$

Quadrangulations with a simple boundary

Number of rooted-quadrangulations with:

- f internal faces.
- simple boundary of size $2 p$ (root-face of degre $2 p$).

$$
\frac{3^{f-p} 2 p}{(f+2 p)(f+2 p-1)}\binom{2 f+p-1}{f-p+1}\binom{3 p}{p} .
$$

Analytic [Bouttier \& Guitter '09] and bijective [Bernardi \& Fusy '17].

Bijection

Theorem (F. \& Sepúlveda '19)

The set of (f, a) tree-decorated maps is in bijection with (the set of maps with a simple boundary of size $2 a$ and f interior faces) \times (the set of trees with a edges).

The bijection makes a correspondence between:
[Tree-decorated map]
Faces of degree q
Internal vertices of degree d
Internal edges
Corner of the tree
[Map with a boundary, Tree]
$\longleftrightarrow \quad$ Internal faces of degree q
$\longleftrightarrow \quad$ Internal vertices of degree d Internal edges
$\longleftrightarrow \quad$ Boundary vertices.

- We can restrict the bijection to q -angulations.
- It can be restricted to some subfamilies of trees:
(1) Binary tree- decorated Maps.
(2) SAW decorated maps (Already done by Caraceni \& Curien).

Notation: $\mathfrak{q}_{f}^{a}=$ Unif. tree-decorated quad. with f faces and a tree of size a. Consider:

- $B_{r}(\mathfrak{m})=$ ball of radius r from the root-vertex.
- $\mathcal{M}=$ set of (locally finite) maps.

We endowed \mathcal{M} with the (local) topology induced by

$$
\mathrm{d}_{\mathrm{loc}}\left(\mathfrak{m}_{1}, \mathfrak{m}_{2}\right)=\left(1+\sup \left\{r \geq 0: \mathrm{B}_{\mathrm{r}}\left(\mathfrak{m}_{1}\right)=\mathrm{B}_{\mathrm{r}}\left(\mathfrak{m}_{2}\right)\right\}\right)^{-1}
$$

$\triangle D$

Proposition

The space $\left(\overline{\mathcal{M}}, \mathrm{d}_{\mathrm{loc}}\right.$) is Polish (metric, separable and complete).

Result

Notation: $\mathfrak{q}_{f}^{a}=$ Unif. tree-decorated quad. with f faces and a tree of size a.

Theorem (F. \& Sepúlveda '19+)

$$
\mathfrak{q}_{f}^{a} \xrightarrow[\text { local }, f \rightarrow \infty]{(d)} \mathfrak{q}_{\infty}^{a} \xrightarrow[\text { local }, a \rightarrow \infty]{(d)} \mathfrak{q}_{\infty}^{\infty}
$$

Result

Notation: $\mathfrak{q}_{f}^{a}=$ Unif. tree-decorated quad. with f faces and a tree of size a.

Theorem (F. \& Sepúlveda '19+)

$$
\mathfrak{q}_{f}^{a} \xrightarrow[\text { local }, f \rightarrow \infty]{(d)} \mathfrak{q}_{\infty}^{a} \xrightarrow[\text { local }, a \rightarrow \infty]{(d)} \mathfrak{q}_{\infty}^{\infty}
$$

Uniform Trees

$$
\mathfrak{t}_{a}=\text { Unif. tree with } a \text { edges. }
$$

Theorem (Kesten '86)

$$
\mathfrak{t}_{a} \xrightarrow[\text { local }]{(d)} \mathfrak{t}_{\infty}
$$

t_{∞} construction.

Uniform quadrangulation with a boundary

$\mathfrak{q}_{f, p}^{S}=$ Unif. quadrangulations with a simple boundary of size $2 p$ and f faces.

Theorem (Curien \& Miermont '12)

$$
\mathfrak{q}_{f, p}^{S} \xrightarrow[\text { local }(f \rightarrow \infty)]{(d)} \mathfrak{q}_{\infty, p}^{S} \xrightarrow[\text { local }(p \rightarrow \infty)]{(d)} \text { UIHPQ }{ }^{S}
$$

Figure: sketch of a UIHPQ ${ }^{S}$.

Local limit results

Notation: $\mathfrak{q}_{f}^{\mathrm{a}}=$ Unif. tree-decorated quad. with f faces and a tree of size a.

Theorem (F. \& Sepúlveda '19+)

$$
\mathfrak{q}_{f}^{a} \xrightarrow[\text { local }, f \rightarrow \infty]{(d)} \mathfrak{q}_{\infty}^{a} \xrightarrow[\text { local }, a \rightarrow \infty]{(d)} \mathfrak{q}_{\infty}^{\infty}
$$

$\mathfrak{q}_{\infty}^{\infty}$ is the "gluing" of \mathfrak{t}_{∞} and UIHPQ .

Local limit results

Notation: $\mathfrak{q}_{f}^{a}=$ Unif. tree-decorated quad. with f faces and a tree of size a.

Theorem (F. \& Sepúlveda '19+)

$$
\mathfrak{q}_{f}^{a} \xrightarrow[\text { local }, f \rightarrow \infty]{(d)} \mathfrak{q}_{\infty}^{a} \xrightarrow[\text { local }, a \rightarrow \infty]{(d)} \mathfrak{q}_{\infty}^{\infty}
$$

$\mathfrak{q}_{\infty}^{\infty}$ is the "gluing" of \mathfrak{t}_{∞} and UIHPQ".

Definition

Given T , a distribution μ is said to be invariant if $\eta_{t} \sim \mu$ for any $t \geq 0$, when $\eta_{0} \sim \mu$.

Well definition of PS:
Can we define a Markov process with jumps according to T?
When well defined, there is a correspondence between G_{T} Markovian generator and $\left\{P_{t}\right\}_{t \geq 0}$ Markovian semigroup; and the following are satisfied

$$
\begin{aligned}
\mu_{t} f & =\mu_{0} P_{t} f \\
\frac{\partial \mu_{t} f}{\partial t} & =\int G_{T} f d \mu_{t}
\end{aligned}
$$

Definition

Given T , a distribution μ is said to be invariant if $\eta_{t} \sim \mu$ for any $t \geq 0$, when $\eta_{0} \sim \mu$.

Well definition of PS:
Can we define a Markov process with jumps according to T?
When well defined, there is a correspondence between G_{T} Markovian generator and $\left\{P_{t}\right\}_{t \geq 0}$ Markovian semigroup; and the following are satisfied

$$
\begin{aligned}
\mu f & =\mu P_{t} f \\
\frac{\partial \mu_{t} f}{\partial t} & =\int G_{T} f d \mu=0
\end{aligned}
$$

Application

Full characterization of (M, T) such that M is invariant by T. Case 2 colors ($\kappa=2$), memory $1(m=1)$ and range $2(L=2)$.

Cycle7MT:=proc (a,b,c,d) option remember: local Vec:
Vec :=[a, b, c, d, 0, 0, 0]:
return(simplify (add $(Z 4([\operatorname{seq}(\operatorname{Vec}[\operatorname{modu}(i+j, 7)], j=1 . .4)]), i=1 . .7))$):
end:
$>$
for i in $\{0,1\}$ do $M[i, 0]:=1-M[i, 1]:$ od:

SystemEquation $:=\{$ seq $(\operatorname{Cyc} 1 e 7 M T(o p(u)), u$ in ensem(4,K)), seq(M[op(u)]*g[op(u)]-1,u in ensem(2,K)), (M[0,1]-M[1,1])*x-1\}: \#
PolynomialSystem:= map(x-> numer(normal $(x))$, SystemEquation): \# numerators only Variables: $=\operatorname{seq}(g[o p(u)], u$ in ensem $(2, K)), x$, seq $(\operatorname{seq}(M[i, j], i=0 . . K-1), j=1 . . K-1)$, NonZeroT : \#
\# grobner
G:= Basis(PolynomialSystem,plex(Variables)):
Affiche($\mathrm{G}, 2000$);
unassign('M'); \# for further computations

$$
\begin{gathered}
K:=2 \\
\text { "Parameters = NonZeroTransition", } t_{0,1}, t_{0,2} t_{0,3}, t_{1,0}, t_{1,2}, t_{1,3}, t_{2,0}, t_{2,1}, t_{2,3}, t_{3,0}, t_{3,1}, t_{3,2} \\
1 \\
t_{3,0} \\
2 \\
t_{2,1} \\
3 \\
t_{1,2} \\
4 \\
t_{0,3} \\
5 \\
t_{0,1} t_{1,0}+t_{0,1} t_{2,0}+t_{0,2} t_{1,0}+t_{0,2} t_{2,0}-t_{1,3} t_{3,1}-t_{1,3} t_{3,2}-t_{2,3} t_{3,1}-t_{2,3} t_{3,2} \\
6 \\
M_{1,1}^{2} t_{1,0}+M_{1,1, t_{2,0}^{2}-M_{1,1}^{2} t_{3,1}-M_{1,1,2}^{2} t_{3,2}-M_{1,1,0} t_{1,0}-M_{1,1} t_{1,3}-M_{1,1} t_{2,0}-M_{1,1} t_{2,3}+t_{1,3}+t_{2,3}}^{19 / 09 / 2019}
\end{gathered}
$$

Generalization of Gaussian elimination for linear systems.

- For a set of polynomials \mathcal{P}, the Grobner basis finds a "minimal representation" of the ideal generated by this set in the ring of polynomials with coefficients in a field (here \mathcal{C}).
-"Minimal representation" $=$ "small" generator of the ideal.
- "Small" = with respect to a certain order of monomials. Basically a way to do the sequence of divisions of polynomials (which is a generalized version of Gaussian division).
- If the result of a Grobner basis gives $\{1\}$, it means that there is no solution (in a sense $1=0$ generates the ideal).
- If the result is different that the constant, then it assures the existence of solutions in the field \mathcal{C}.

Multi-dimensional case: invariance of product measures

Consider the three following sets:

$$
\Gamma_{0}=\{(0,0),(0,1),(1,0)\}, \quad \Gamma_{1}=\Gamma_{0} \cup\{(2,0)\}, \quad \Gamma_{2}=\Gamma_{1} \cup\{(1,1)\} .
$$

Theorem 2D

Let $\kappa<+\infty$. Consider ρ a probability distribution with full support on E_{κ} and $\mathrm{T}=\left[\mathcal{T}_{\mu} v\right]_{\mu, v \in E_{\kappa}^{\mathbf{S G}_{q}}}$ a JRM indexed by 2×2 squares. The measure $\rho^{\mathbb{Z}^{2}}$ is invariant by T on \mathbb{Z}^{2} iff the two following conditions hold simultaneously:

- NLine $^{\rho, \mathrm{T}} \equiv 0$ on $E_{\kappa}^{\Gamma_{0}}$,
- for any $x \in E_{\kappa}^{\Gamma_{2}}$,

$$
\begin{equation*}
\operatorname{NLine}^{\rho, \mathrm{T}}(x)-\operatorname{NLine}^{\rho, \mathrm{T}}\left(x\left(\Gamma_{1}\right)\right)=0 . \tag{1}
\end{equation*}
$$

Scaling limit conjecture

Conjecture (F. \& Sepúlveda '19+)

Let $(\mathfrak{m}, \mathfrak{t})$ be a Unif. tree-decorated map with f faces and boundary of size a(f) with $a(f)=O\left(f^{\alpha}\right)$. Depending on α as $f \rightarrow \infty$

$$
\left((\mathfrak{m}, \mathfrak{t}), \frac{\mathrm{d}_{\text {map }}}{f^{\beta}}\right) \xrightarrow[G H]{(d)} \begin{cases}\text { Brownian map } & \text { if } \alpha<1 / 2, \beta=1 / 4 \text { (Proved) } \\ \text { Shocked map } & \text { if } \alpha=1 / 2, \beta=1 / 4 \text { (In progress) } \\ \text { Tree-decorated map } & \text { if } \alpha>1 / 2, \\ & \beta=\left(2 \chi-\frac{1}{2}\right) \alpha-\chi+\frac{1}{2}\end{cases}
$$

Scaling limit conjecture

Conjecture (F. \& Sepúlveda '19+)

Let $(\mathfrak{m}, \mathfrak{t})$ be a Unif. tree-decorated map with f faces and boundary of size a(f) with $a(f)=O\left(f^{\alpha}\right)$. Depending on α as $f \rightarrow \infty$

$$
\left((\mathfrak{m}, \mathfrak{t}), \frac{d_{\text {map }}}{f^{\beta}}\right) \xrightarrow[G H]{(d)} \begin{cases}\text { Brownian map } & \text { if } \alpha<1 / 2, \beta=1 / 4 \text { (Proved) } \\ \text { Shocked map } & \text { if } \alpha=1 / 2, \beta=1 / 4 \text { (In progress) } \\ \text { Tree-decorated map } & \text { if } \alpha>1 / 2, \\ & \beta=\left(2 \chi-\frac{1}{2}\right) \alpha-\chi+\frac{1}{2}\end{cases}
$$

Shocked map

Shocked map properties:

- It is not degenerated (Proved).
- It should be the gluing of a Brownian disk and a CRT.
- Hausdorff dim. 4 (Proved).
- The tree has Hausdorff dim. 2 (In progress, ≤ 2 proved).
- Homeomorphic to \mathbb{S}^{2}. (Proved).

Figure: Unif. $(90 k, 500)$ tree-decorated quadrangulation.

Brownian Disk

$\mathfrak{q}_{f, p}=$ Unif. quadrangulations with boundary $2 p$ and f faces.
For a sequence $(p(f))_{f \in \mathbb{N}}$, define $\bar{p}=\lim p(f) f^{-1 / 2}$ as $f \rightarrow \infty$.

Theorem (Scaling limit (Bettinelli '15))

$\left(\mathfrak{q}_{f, p(f)}, \frac{d_{\text {map }}}{s(f, p(f))}\right) \xrightarrow[G H]{(d)} \begin{cases}\text { Brownian map } & \text { if } s(f, p(f))=f^{1 / 4} \text { and } \bar{p}=0 \\ \text { Brownian disk } & \text { if } s(f, p(f))=f^{1 / 4} \text { and } \bar{p} \in(0,+\infty) \\ C R T & \text { if } s(f, p(f))=2 p(f)^{1 / 2} \text { and } \bar{p}=\infty\end{cases}$

Brownian Disk

$\mathfrak{q}_{f, p}=$ Unif. quadrangulations with boundary $2 p$ and f faces.
For a sequence $(p(f))_{f \in \mathbb{N}}$, define $\bar{p}=\lim p(f) f^{-1 / 2}$ as $f \rightarrow \infty$.

Theorem (Scaling limit (Bettinelli '15))

$\left.d_{\text {map }}\right) \quad(d) \quad \begin{aligned} & \text { Brownian map } \\ & \text { if } s(f, p(f))=f^{1 / 4} \text { and } \bar{p}=0\end{aligned}$
$\left(\mathfrak{q}_{f, p(f)}, \frac{d_{\text {map }}}{s(f, p(f))}\right) \xrightarrow[G H]{(d)} \begin{cases}B r o w n i a n ~ d i s k & \text { if } s(f, p(f))=f^{1 / 4} \text { and } \bar{p} \in(0,+\infty) \\ \text { BRT } & \text { if } s(f, p(f))=2 p(f)^{1 / 2} \text { and } \bar{p}=\infty\end{cases}$

Properties (Bettinelli \& Miermont '15)
Brownian disk properties

- The boundary is simple.
- Hausdorff dim. 4 in the interior, 2 in the boundary.
- Homeomorphic to the disk 2d.

Unif. quad. with 30k interior faces and boundary 173.

Brownian Disk

$\mathfrak{q}_{f, p}^{S}=$ Unif. quadrangulations with simple boundary $2 p$ and f faces.
For a sequence $(p(f))_{f \in \mathbb{N}}$, define $\bar{p}=\lim p(f) f^{-1 / 2}$ as $f \rightarrow \infty$.

Theorem (Scaling limit (Bettinelli, Curien, F., Sepúlveda +'19))

$\left(\mathfrak{q}_{f, p(f)}^{S}, \frac{d_{\text {map }}}{s(f, p(f))}\right) \xrightarrow[G H]{(d)} \begin{cases}\text { Brownian map } & \text { if } s(f, p(f))=f^{1 / 4} \text { and } \bar{p}=0 \\ \text { Brownian disk } & \text { if } s(f, p(f))=f^{1 / 4} \text { and } \bar{p} \in(0,+\infty) \\ C R T & \text { if } s(f, p(f))=2 p(f)^{1 / 2} \text { and } \bar{p}=\infty\end{cases}$

Properties (Bettinelli \& Miermont '15)

Brownian disk properties

- The boundary is simple.
- Hausdorff dim. 4 in the interior, 2 in the boundary.
- Homeomorphic to the disk 2d.

Unif. quad. with 30k interior faces and boundary 173.

