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A planar map is a proper embedding of
a finite connected planar graph in the
sphere, considered up to direct
homeomorphisms of the sphere. The
faces are the connected components of
the complement of the edges. It has a
distinguished half-edge: the root edge.
The face that is at the left of the
root-edge will be called the root-face.




Figure: Same planar graph with different embeddings
(sketch by N. Curien).
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Figure: Same planar map seen as different objects/codings
(sketch by N. Curien).

January 28, 2019 6 /45

et el



Planar trees

A planar tree is a map with one face.
Denote as 7,, the number of trees with
m edges.

T —c - 1 <2m>
m+1\m
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Quadrangulations

The degree of a face is the number of
edges adjacent to it (an edge included in
a face is counted twice). A
quadrangulation is a map whose faces
have degree 4.




Quadrangulations

Let Qf be the set of all quadrangulations
with f faces, then

2 1 (of
__af
|Q”_3f+1f+1<f>'

————

Cr
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Quadrangulations

Let Qf be the set of all quadrangulations
with f faces, then

2 1 (2f
__af
|Q”_3f+1f+1<f>'
————
Cr

THIS NUMBER ALSO COUNTS
GENERAL MAPS WITH m = f EDGES!

— et el

January 28, 2019

10/ 45



Quadrangulations with a boundary

A quadrangulation with a boundary is a
map where the root-face plays a special
role: it has arbitrary degree.

All others faces are called internal faces
and have degree 4.




Quadrangulations with a boundary

The set of quadrangulations with f
internal faces and a boundary of size p
has cardinality

S s <2ff+p> (2:)
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Quadrangulations with a simple boundary

The set of quadrangulations with f
internal faces and a simple boundary of
size p (root-face of degre p) has
cardinality

3f=P(2f + p —1)! (3p)!
(f +2p)!(f —p+1)! p!(2p — 1)V




Spanning tree-decorated maps

A spanning tree-decorated map (ST
map) is a pair (m, t) where m is a map
and t Cy m is a spanning tree of m.

et el om0



Spanning tree-decorated maps

The family of ST maps with m edges is
in bijection with a pair of interlaced trees
(mating of trees), one of size m and
other of size m + 1 (lots of bijections for
this family). As a consequence this
family is counted by

Cmcm+1

TO OUR KNOWLEDGE ST
Q-ANGULATIONS HAVE NOT BEEN
COUNTED.
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°)

= What about a tree decorating a map, but not decorated in a spanning
: tree?

et el ey 2 ot )/



°)

= What about a tree decorating a map, but not decorated in a spanning
: tree?

(f, m)-tree decorated map!!! where m denote the number of edges of
the tree decorating the map and n the number of faces of the map.
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°)

= What about a tree decorating a map, but not decorated in a spanning
: tree?

(f, m)-tree decorated map!!! where m denote the number of edges of
the tree decorating the map and n the number of faces of the map.

°)
°)

What happens when we use m=1and m=f +17
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°)

= What about a tree decorating a map, but not decorated in a spanning
: tree?

(f, m)-tree decorated map!!! where m denote the number of edges of
the tree decorating the map and n the number of faces of the map.

°)
°)

What happens when we use m=1and m=f +17

We interpolate between the uniform quadrangulation and the ST
quadrangulation!!!!
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Tree-decorated map

An (f, m) tree-decorated map is a pair (m, t) where m is a map with f faces,
and t is a tree with m edges, so that t Cy m containing the root-edge.
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Tree-decorated map

An (f, m) tree-decorated map is a pair (m, t) where m is a map with f faces,
and t is a tree with m edges, so that t Cy m containing the root-edge.

In what follows, a Uniform (f, m) tree-decorated quadrangulations is a random
variable chosen in the family of all (f, m) tree-decorated quadrangulations.
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Bijection

Proposition (F. & Septilveda '18+)

The set of (f, m) tree-decorated maps is in bijection with the Cartesian product

between the set of maps with a simple boundary of size 2m and f interior faces
and the set of trees with m edges.
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Bijection

Proposition (F. & Septilveda '18+)

The set of (f, m) tree-decorated maps is in bijection with the Cartesian product

between the set of maps with a simple boundary of size 2m and f interior faces
and the set of trees with m edges.

m? t (m,t)

Figure: Sketch of the bijection. Left: Map with boundary and planted tree representing
this bijection. Right: Tree decorated map. We plot it being embedded in the sphere.
The arrows are root-edges and the grid lines represent the inner faces.
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~
Figure: Left: Zoom of the tree decorated map. In green the decoration and in black the
edges that do not belong to the decoration.

Right: Map with boundary and planted tree. Transformation obtained from the corners
(green points) of the decoration.
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Why does the boundary need to be simple?
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Why does the boundary need to be simple?

If not the gluing produces BUBBLES!
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Why does the boundary need to be simple?

If not the gluing produces BUBBLES!

Figure: Left: Map with a non-simple boundary (interior faces filled with lines) and a tree.

Right: Bubbles (3D plot) form by the gluing of a map with non-simple boundary and a
tree.
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Counting results

Corollary (F. & Septilveda '18+)

The number of (f, m) tree-decorated triangulations are
2f=2m(3f /2 + m — 2)!! om 4m\ 1 [2m (1)
(f/2—=m+1)(f/2+43m)!! 2m)m+1\m )’
where nll = H,-Li%_l)/zj(n —2§).
The number of (f, m) tree-decorated quadrangulations is
4f—m 2f + m—1)! (3m)! 1 /2m 2)
(F+2m)i(f —m+1)!'m2m—-1)m+1\ m
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Counting results

Corollary (F. & Septilveda '18+)

The number of (f, m) tree-decorated triangulations are

212m(3F/2+ m =2 <4m> 1 (2m>’

(F/2—m+ DI(Ff/2+3m)1""\2m) m+1\ m

where nll = H,-Li%_l)/zj(n —2§).
The number of (f, m) tree-decorated quadrangulations is

@ 2f + m—1)! (3m)! 1 /2m
3 (f+2m)!(f—m+1)!m!(2m—1)!m+1<m) 2)

We also count

@ Maps (triangulations and quadrangulations) with a simple boundary
decorated in a spanning tree.

@ Maps (triangulations and quadrangulations) with a simple boundary
decorated in a subtree.

@ Forest-decorated maps.
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Local Limit (Benjamini-Schramm Topology '01)

For a map m and r € N, define B,(m) as the ball of radius r from the root-vertex.
Consider M a family of finite maps. The local topology on M is the metric space
(M, dioc), where

dioc(mz, m2) = (1 + sup{r > 0: B,(m1) = B(m2)})~"*

Meaning that a sequence of maps (m;)ien converges if for all r € N, B.(m;) is
constant from certain point on.
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Local Limit (Benjamini-Schramm Topology '01)

For a map m and r € N, define B,(m) as the ball of radius r from the root-vertex.
Consider M a family of finite maps. The local topology on M is the metric space

(M, dioc), where
dioc(m1,m2) = (1 +sup{r > 0: B,(m1) = B,(m2)})~*

Meaning that a sequence of maps (m;)ien converges if for all r € N, B.(m;) is
constant from certain point on.

Proposition

The space (M, dioc) is Polish (metric, separable and complete).
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Gromov-Hausdorff topology

Recall that if (E, dg) is a metric space and A, B C Z, the Hausdorff distance
between A and B is given by

dn(A, B) = max { max de(x, A), ryean de(y, B)}
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Gromov-Hausdorff topology

Recall that if (E, dg) is a metric space and A, B C Z, the Hausdorff distance
between A and B is given by

dn(A, B) = max { max de(x, A), ryean de(y, B)}

Consider the set S of compact metric spaces up to isometry classes. The
Gromov-Hausdorff distance between two metric spaces (X, d) and (X', d’) is
defined as

den((X,d), (X', d")) = inf du(4(X), ¢'(X'))

where the infimum is taken over all metric spaces (E,dg) and all isometric
embeddings ¢, ¢’ from X, X’ respectively into E.
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Gromov-Hausdorff topology

Recall that if (E, dg) is a metric space and A, B C Z, the Hausdorff distance
between A and B is given by

dn(A, B) = max { max de(x, A), r;163A>< de(y, B)}

Consider the set S of compact metric spaces up to isometry classes. The
Gromov-Hausdorff distance between two metric spaces (X, d) and (X', d’) is
defined as

den((X,d), (X', d")) = inf du(4(X), ¢'(X'))

where the infimum is taken over all metric spaces (E,dg) and all isometric
embeddings ¢, ¢’ from X, X’ respectively into E.

Proposition

The function dgy induces a metric on S. The space (S,dgn) is separable and
complete.
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Uniform Trees

Let t,, be a tree uniformly chosen in 7,,.
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Uniform Trees

Let t,, be a tree uniformly chosen in 7,,.

Theorem (Kesten '86)

(d)

local
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Uniform Trees

Let t,, be a tree uniformly chosen in 7,,.

Theorem (Kesten '86)

(d)

local

@ t, IS an infinite tree.

o Each vertex has bounded degree.

@ It has one infinite branch (the spine)
which divides the tree in
independent critical geometric
Galton-Watson trees.
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Uniform Trees

Let t,, be a tree uniformly chosen in 7,,.

Theorem (Kesten '86) Theorem (Aldous '91)
(d)
tm 4)/ ; to (tm, %) L} CRT
oca m /2 GH

@ t, IS an infinite tree.

o Each vertex has bounded degree.

@ It has one infinite branch (the spine)
which divides the tree in
independent critical geometric
Galton-Watson trees.
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Uniform Trees

Let t,, be a tree uniformly chosen in 7,,.

Theorem (Kesten '86) Theorem (Aldous '91)
(d)
tm 4)/ ; to (tm, %) L} CRT
oca m /2 GH

Proposition

Proposition
@ The CRT is a tree.

o Almost every point is a leaf.

@ t, IS an infinite tree.

o Each vertex has bounded degree.

@ It has one infinite branch (the spine)
which divides the tree in
independent critical geometric
Galton-Watson trees.

@ Hausdorff dimension 2.

o [ts geodesics are represented in the
coding.
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t: the critical geometric GW tree conditioned to survive.
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t: the critical geometric GW tree conditioned to survive.

Figure: Geometry of t.
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t: the critical geometric GW tree conditioned to survive.

Lars

Figure: Geometry of to.
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Figure: Uniform random tree 50k edges.
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Uniform quadrangulations

Consider g¢ a uniformly of the set of quadrangulations with f faces. The
Brownian map, was defined by Marckert and Mokkadem in 2006.
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Uniform quadrangulations

Consider g¢ a uniformly of the set of quadrangulations with f faces. The
Brownian map, was defined by Marckert and Mokkadem in 2006.

Theorem (Krikun '06)
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Uniform quadrangulations

Consider g¢ a uniformly of the set of quadrangulations with f faces. The
Brownian map, was defined by Marckert and Mokkadem in 2006.

Theorem (Krikun '06)

ar — 2 UIPQ

v

@ The UIPQ is an infinite
quadrangulation.

@ Properties about the volume and
perimeter of the exploration of the
UIPQ are known.

o Locally finitely many faces.
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Uniform quadrangulations

Consider g¢ a uniformly of the set of quadrangulations with f faces. The
Brownian map, was defined by Marckert and Mokkadem in 2006.

Theorem (Miermont '13, Le Gall

Theorem (Krikun '06) =)

ar =2 UPQ (o ) 2

' F1/ —> Brownian map

@ The UIPQ is an infinite
quadrangulation.

@ Properties about the volume and
perimeter of the exploration of the
UIPQ are known.

o Locally finitely many faces.
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Uniform quadrangulations

Consider g¢ a uniformly of the set of quadrangulations with f faces. The
Brownian map, was defined by Marckert and Mokkadem in 2006.

Theorem (Miermont '13, Le Gall

3k)

Theorem (Krikun '06)

' F1/4

d
(q map) L Brownian map

Properties
o Hausdorff dimension is 4 (Le Gall

'07).
@ Properties about the volume and )

perimeter of the exploration of the © Homeomorphic to the two
UIEQ are knowh. dimensional sphere (Le Gall &

Paulin '08).
< o lts geodesics are described by the
coding (well labeled trees).

et ] s e

The UIPQ is an infinite

o
quadrangulation.

o Locally finitely many faces.




Figure: UIPT representation.

(Sketch by N. Curien)
Tree decorated maps e S



Brownian map

Figure: Brownian map 30k faces.
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Uniform quadrangulation with a boundary

Let gf be a map uniformly chosen in the set of all quadrangulations with a
boundary of size p with f faces.
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Uniform quadrangulation with a boundary

Let gf be a map uniformly chosen in the set of all quadrangulations with a
boundary of size p with f faces.

Theorem (Curien & Miermont '12)

@ —D g 9D uiHPQ

local(f —00) & local(p—o0)
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Uniform quadrangulation with a boundary

Let gf be a map uniformly chosen in the set of all quadrangulations with a
boundary of size p with f faces.

Theorem (Curien & Miermont '12)

C) p ()

local(f —00) & local(p—o0)

UIHPQ

Properties

| \

e qP, is called the Uniform Infinite Planar Quadrangulation with a boundary of
perimeter p.

@ They also obtain the convergences above conditioned to have simple
boundary

@ The gP, has one infinite irreducible component, called the core. Moreover,

0Core(qP,) (prob) 1
2p p—oo 3

i
e e e ey 7 ot 20



UIHPQ

Figure: UIHPQ
(Sketch by N. Curien and A. Caraceni).
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Brownian Disk

Let g% be a map uniformly chosen in the set of quadrangulations with f faces and
boundary of size p. For a sequence (p,)nen, define p = lim pan~ Y2 as n — oo.
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Brownian Disk

Let g% be a map uniformly chosen in the set of quadrangulations with f faces and

boundary of size p. For a sequence (p,)nen, define p = lim pan~ Y2 as n — oo.

Theorem (Scaling limit (Betinelli '15))

Brownian map if s(f,pf) = f/* and p = 0
(q,,, s(fm;;;f)> (C;-)I Brownian disk if s(f,ps) = f1/* and p € (0, +o0)
CRT if s(f, pr) = 2py/> and p = oo
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Brownian Disk

Let g% be a map uniformly chosen in the set of quadrangulations with f faces and

boundary of size p. For a sequence (p,)nen, define p = lim pan~ Y2 as n — oo.

Theorem (Scaling limit (Betinelli '15))

q Brownian map if s(f,pf) = f/* and p = 0
(q,,, s(fmj: )> (C;-)I Brownian disk if s(f, ps) = f/* and p € (0, +00)
' CRT if s(f, pr) = 2p/% and p = oo

Properties (Betinelli & Miermont '15)

Brownian disk properties

@ The boundary is simple.

o Hausdorff dimension 4 in the interior, 2 in the boundary.
@ Homeomorphic to the two dimensional disk.

o Links with the Brownian map.

v
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Brownian Disk

Figure: Uniform quadrangulation with a boundary 30k interior faces, 173 edges in the
boundary.
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Uniform ST map

Let qu be uniformly chosen in the set of ST quadrangulations with f faces.

@ The conjectured scaling limit of these objects should be related to continuum
Liouville quantum gravity.

@ Recently it has been shown that there exists a constant 0.275 < y < 0.288,
such that the expected diameter is of order nX (Ding & Gwynne '18,
Gwynne, Holden & Sun '16).

@ In the case of convergence as a metric space, there is evidence that the limit
is not the Brownian map.

@ There exists a local limit for this object and other decorated-families
(Sheffield '11).
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Uniform ST decorated-quadrangulation " Scaling limit”

Figure: Uniform spanning tree-decorated quadrangulation 30k faces.
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Motivation

@ Uniform (f, m) tree-decorated quadrangulation model is that it interpolates
between uniform quadrangulation with f faces and the uniform ST-decorated
quadrangulation with f faces.

In light of this effect, we hope to give a phase transition between these
objects obtaining an insight about the metric scaling limit of uniform ST map.
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Motivation

@ Uniform (f, m) tree-decorated quadrangulation model is that it interpolates
between uniform quadrangulation with f faces and the uniform ST-decorated

quadrangulation with f faces.
In light of this effect, we hope to give a phase transition between these
objects obtaining an insight about the metric scaling limit of uniform ST map.

@ This model could encode two different statistical mechanic objects, one on
the tree and one on the map without considering the tree.
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Local limit results

~ What happens if we glue the UIHPQg (local limit of quadrangulations
. with a simple boundary) with ¢, (local limit of uniform trees)?

-~
o
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Local limit results

~ What happens if we glue the UIHPQg (local limit of quadrangulations
. with a simple boundary) with ¢, (local limit of uniform trees)?
: Sequential gluing, tool used to define a peeling.

-~
o

Figure: First step in the sequential gluing procedure. The second step is sketched with
the next edges in the contour to glue in blue.

et el ey 7 ot 80



Local limit results

~ What happens if we glue the UIHPQg (local limit of quadrangulations
j' with a simple boundary) with ¢, (local limit of uniform trees)?
: Sequential gluing, tool used to define a peeling.

-~
)

Figure: First step in the sequential gluing procedure. The second step is sketched with
the next edges in the contour to glue in blue.

Proposition (F. & Septilveda '18+)
There exists a local limit for the gluing of an infinite tree t with a UIHPQs.
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Local limit results

~ What happens if we glue the UIHPQg (local limit of quadrangulations
,:. with a simple boundary) with ¢, (local limit of uniform trees)?
Sequential gluing, tool used to define a peeling.

-~
)

{

Figure: First step in the sequential gluing procedure. The second step is sketched with
the next edges in the contour to glue in blue.

Proposition (F. & Septilveda '18+)
There exists a local limit for the gluing of an infinite tree t with a UIHPQs.

We obtain more local limits. I
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Scaling limit results

Corollary (F. & Septilveda '18+)

Let (m¢, tm,) be a uniform (f, m¢) tree-decorated quadrangulations with
mg < f+1. Then as my — o0,
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Scaling limit conjecture

Conjecture (F. & Sepulveda '18+)

Let (m¢, tm,) be a uniform (f, m¢) tree-decorated quadrangulation with
mg = O(f*). Depending on «

Brownian map ifao <1/2,8 =1/4(Proved)
((mf, ), h) (d) Shocked map /:fa =1/2,8 =1/4(In progress
B8 GH Tree-decorated map  if « > 1/2,

B=(2x-3)a-x+3

4
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Scaling limit conjecture

Conjecture (F. & Sepllveda '18+)

Let (m¢, t,,) be a uniform (f, m¢) tree-decorated quadrangulation with
mg = O(f*). Depending on «

Brownian map ifao <1/2,8 =1/4(Proved)
((mf, ), h) (d) Shocked map /:foz =1/2,8 =1/4(In progress
B8 GH Tree-decorated map  if « > 1/2,

B=(2x-3)a-x+3

4

@ The Shocked map is not trivial (Proved).

@ The Shocked map should be the gluing between a Brownian disk with
perimeter p and a CRT.

@ The Shocked map has Hausdorff dimension 4 outside the tree (Proved).
@ It should have dimension 2 on the decoration (In progress).

@ Homeomorphic to the two dimensional sphere (In progress).
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Shocked map

Figure: Uniform tree-decorated quadrangulation 90k faces decorated on a tree of size 500.

et el erery 7 ot A2



g Why shocked?
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Figure: Golf field struck by lightning.
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Thank you!
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