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Luis Fredes Tree-decorated maps January 28, 2019 1 / 45



Overview
1 Maps

Maps families and bijections
Planar trees
Quadrangulations
Quadrangulations with a boundary
Spanning tree-decorated maps

Tree-decorated map
Bijection

Counting results

2 Convergences
Known limits

Uniform trees
Uniform quadrangulations
Brownian Disk
Uniform ST map

3 The shocked map
Motivation
Limit results

Local limit results
Scaling limit results

Luis Fredes Tree-decorated maps January 28, 2019 2 / 45



MAPS
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Map

A planar map is a proper embedding of
a finite connected planar graph in the
sphere, considered up to direct
homeomorphisms of the sphere. The
faces are the connected components of
the complement of the edges. It has a
distinguished half-edge: the root edge.
The face that is at the left of the
root-edge will be called the root-face.
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Figure: Same planar graph with different embeddings
(sketch by N. Curien).
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Figure: Same planar map seen as different objects/codings
(sketch by N. Curien).
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Planar trees

A planar tree is a map with one face.
Denote as Tm the number of trees with
m edges.

Tm = Cm =
1

m + 1

(
2m

m

)
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Quadrangulations

The degree of a face is the number of
edges adjacent to it (an edge included in
a face is counted twice). A
quadrangulation is a map whose faces
have degree 4.
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Quadrangulations

Let Qf be the set of all quadrangulations
with f faces, then

|Qf | = 3f 2

f + 1

1

f + 1

(
2f

f

)
︸ ︷︷ ︸

Cf

.

THIS NUMBER ALSO COUNTS
GENERAL MAPS WITH m = f EDGES!
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Quadrangulations with a boundary

A quadrangulation with a boundary is a
map where the root-face plays a special
role: it has arbitrary degree.
All others faces are called internal faces
and have degree 4.
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Quadrangulations with a boundary

The set of quadrangulations with f
internal faces and a boundary of size p
has cardinality

3f f

(f + p + 1)(2f + p)

(
2f + p

f

)(
2p

p

)
.
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Quadrangulations with a simple boundary

The set of quadrangulations with f
internal faces and a simple boundary of
size p (root-face of degre p) has
cardinality

3f−p(2f + p − 1)!

(f + 2p)!(f − p + 1)!

(3p)!

p!(2p − 1)!
.
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Spanning tree-decorated maps

A spanning tree-decorated map (ST
map) is a pair (m, t) where m is a map
and t ⊂M m is a spanning tree of m.
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Spanning tree-decorated maps

The family of ST maps with m edges is
in bijection with a pair of interlaced trees
(mating of trees), one of size m and
other of size m + 1 (lots of bijections for
this family). As a consequence this
family is counted by

CmCm+1

TO OUR KNOWLEDGE ST
Q-ANGULATIONS HAVE NOT BEEN
COUNTED.
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What about a tree decorating a map, but not decorated in a spanning
tree?

(f ,m)-tree decorated map!!! where m denote the number of edges of
the tree decorating the map and n the number of faces of the map.

What happens when we use m = 1 and m = f + 1?

We interpolate between the uniform quadrangulation and the ST
quadrangulation!!!!
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Tree-decorated map

An (f ,m) tree-decorated map is a pair (m, t) where m is a map with f faces,
and t is a tree with m edges, so that t ⊂M m containing the root-edge.

In what follows, a Uniform (f ,m) tree-decorated quadrangulations is a random
variable chosen in the family of all (f ,m) tree-decorated quadrangulations.

Luis Fredes Tree-decorated maps January 28, 2019 17 / 45



Tree-decorated map

An (f ,m) tree-decorated map is a pair (m, t) where m is a map with f faces,
and t is a tree with m edges, so that t ⊂M m containing the root-edge.

In what follows, a Uniform (f ,m) tree-decorated quadrangulations is a random
variable chosen in the family of all (f ,m) tree-decorated quadrangulations.

Luis Fredes Tree-decorated maps January 28, 2019 17 / 45



Bijection

Proposition (F. & Sepúlveda ’18+)

The set of (f ,m) tree-decorated maps is in bijection with the Cartesian product
between the set of maps with a simple boundary of size 2m and f interior faces
and the set of trees with m edges.

mb t′

+ ←→

(m, t)

Figure: Sketch of the bijection. Left: Map with boundary and planted tree representing
this bijection. Right: Tree decorated map. We plot it being embedded in the sphere.
The arrows are root-edges and the grid lines represent the inner faces.
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←→

Figure: Left: Zoom of the tree decorated map. In green the decoration and in black the
edges that do not belong to the decoration.

Right: Map with boundary and planted tree. Transformation obtained from the corners
(green points) of the decoration.
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Why does the boundary need to be simple?

If not the gluing produces BUBBLES!

+
f1 f2 f3 ←→ f1

f2
f3

Figure: Left: Map with a non-simple boundary (interior faces filled with lines) and a tree.

Right: Bubbles (3D plot) form by the gluing of a map with non-simple boundary and a
tree.
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Counting results

Corollary (F. & Sepúlveda ’18+)

The number of (f ,m) tree-decorated triangulations are

2f−2m(3f /2 + m − 2)!!

(f /2−m + 1)!(f /2 + 3m)!!
2m

(
4m

2m

)
1

m + 1

(
2m

m

)
, (1)

where n!! =
∏b(n−1)/2c

i=0 (n − 2i).
The number of (f ,m) tree-decorated quadrangulations is

3f−m (2f + m − 1)!

(f + 2m)!(f −m + 1)!

(3m)!

m!(2m − 1)!

1

m + 1

(
2m

m

)
(2)

We also count

Maps (triangulations and quadrangulations) with a simple boundary
decorated in a spanning tree.

Maps (triangulations and quadrangulations) with a simple boundary
decorated in a subtree.

Forest-decorated maps.
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CONVERGENCE

RESULTS
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Local Limit (Benjamini-Schramm Topology ’01)

For a map m and r ∈ N, define Br (m) as the ball of radius r from the root-vertex.
Consider M a family of finite maps. The local topology on M is the metric space
(M, dloc), where

dloc(m1,m2) = (1 + sup{r ≥ 0 : Br(m1) = Br(m2)})−1

Meaning that a sequence of maps (mi )i∈N converges if for all r ∈ N, Br (mi ) is
constant from certain point on.

Proposition

The space (M, dloc) is Polish (metric, separable and complete).
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Gromov-Hausdorff topology

Recall that if (E , dE ) is a metric space and A,B ⊂ Z , the Hausdorff distance
between A and B is given by

dH(A,B) = max
{

max
x∈B

dE(x,A),max
y∈A

dE(y,B)
}

Consider the set S of compact metric spaces up to isometry classes. The
Gromov-Hausdorff distance between two metric spaces (X , d) and (X ′, d ′) is
defined as

dGH((X, d), (X′, d′)) = inf dH(φ(X), φ′(X′))

where the infimum is taken over all metric spaces (E , dE) and all isometric
embeddings φ, φ′ from X , X ′ respectively into E .

Proposition

The function dGH induces a metric on S. The space (S , dGH) is separable and
complete.

Luis Fredes Tree-decorated maps January 28, 2019 24 / 45



Gromov-Hausdorff topology

Recall that if (E , dE ) is a metric space and A,B ⊂ Z , the Hausdorff distance
between A and B is given by

dH(A,B) = max
{

max
x∈B

dE(x,A),max
y∈A

dE(y,B)
}

Consider the set S of compact metric spaces up to isometry classes. The
Gromov-Hausdorff distance between two metric spaces (X , d) and (X ′, d ′) is
defined as

dGH((X, d), (X′, d′)) = inf dH(φ(X), φ′(X′))

where the infimum is taken over all metric spaces (E , dE) and all isometric
embeddings φ, φ′ from X , X ′ respectively into E .

Proposition

The function dGH induces a metric on S. The space (S , dGH) is separable and
complete.

Luis Fredes Tree-decorated maps January 28, 2019 24 / 45



Gromov-Hausdorff topology

Recall that if (E , dE ) is a metric space and A,B ⊂ Z , the Hausdorff distance
between A and B is given by

dH(A,B) = max
{

max
x∈B

dE(x,A),max
y∈A

dE(y,B)
}

Consider the set S of compact metric spaces up to isometry classes. The
Gromov-Hausdorff distance between two metric spaces (X , d) and (X ′, d ′) is
defined as

dGH((X, d), (X′, d′)) = inf dH(φ(X), φ′(X′))

where the infimum is taken over all metric spaces (E , dE) and all isometric
embeddings φ, φ′ from X , X ′ respectively into E .

Proposition

The function dGH induces a metric on S. The space (S , dGH) is separable and
complete.

Luis Fredes Tree-decorated maps January 28, 2019 24 / 45



Uniform Trees

Let tm be a tree uniformly chosen in Tm.

Theorem (Kesten ’86)

tm
(d)−−−−−→
local

t∞

Proposition

t∞ is an infinite tree.

Each vertex has bounded degree.

It has one infinite branch (the spine)
which divides the tree in
independent critical geometric
Galton-Watson trees.

Theorem (Aldous ’91)(
tm,

dTree

m1/2

)
(d)−−−−→
GH

CRT

Proposition

The CRT is a tree.

Almost every point is a leaf.

Hausdorff dimension 2.

Its geodesics are represented in the
coding.
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t∞: the critical geometric GW tree conditioned to survive.

Figure: Geometry of t∞.
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CRT

Figure: Uniform random tree 50k edges.
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Uniform quadrangulations

Consider qf a uniformly of the set of quadrangulations with f faces. The
Brownian map, was defined by Marckert and Mokkadem in 2006.

Theorem (Krikun ’06)

qf
(d)−−−−−→
local

UIPQ

Properties

The UIPQ is an infinite
quadrangulation.

Properties about the volume and
perimeter of the exploration of the
UIPQ are known.

Locally finitely many faces.

Theorem (Miermont ’13, Le Gall
’13)

(
qf ,

dmap

f 1/4

)
(d)−−−−→
GH

Brownian map

Properties

Hausdorff dimension is 4 (Le Gall
’07).

Homeomorphic to the two
dimensional sphere (Le Gall &
Paulin ’08).

Its geodesics are described by the
coding (well labeled trees).
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UIPT

Figure: UIPT representation.
(Sketch by N. Curien)
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Brownian map

Figure: Brownian map 30k faces.
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Uniform quadrangulation with a boundary

Let qp
f be a map uniformly chosen in the set of all quadrangulations with a

boundary of size p with f faces.

Theorem (Curien & Miermont ’12)

qp
f

(d)−−−−−−−→
local(f→∞)

qp
∞

(d)−−−−−−−→
local(p→∞)

UIHPQ

Properties

qp
∞ is called the Uniform Infinite Planar Quadrangulation with a boundary of

perimeter p.

They also obtain the convergences above conditioned to have simple
boundary

The qp
∞ has one infinite irreducible component, called the core. Moreover,

∂Core(qp
∞)

2p

(prob)−−−→
p→∞

1

3

.
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UIHPQ

Figure: UIHPQ
(Sketch by N. Curien and A. Caraceni).
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Brownian Disk

Let qp
f be a map uniformly chosen in the set of quadrangulations with f faces and

boundary of size p. For a sequence (pn)n∈N, define p̄ = lim pnn
−1/2 as n→∞.

Theorem (Scaling limit (Betinelli ’15))

(
qn,

dmap

s(f , pf )

)
(d)−−−−→
GH


Brownian map if s(f , pf ) = f 1/4 and p̄ = 0

Brownian disk if s(f , pf ) = f 1/4 and p̄ ∈ (0,+∞)

CRT if s(f , pf ) = 2p
1/2
f and p̄ =∞

Properties (Betinelli & Miermont ’15)

Brownian disk properties

The boundary is simple.

Hausdorff dimension 4 in the interior, 2 in the boundary.

Homeomorphic to the two dimensional disk.

Links with the Brownian map.
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Brownian disk if s(f , pf ) = f 1/4 and p̄ ∈ (0,+∞)

CRT if s(f , pf ) = 2p
1/2
f and p̄ =∞

Properties (Betinelli & Miermont ’15)

Brownian disk properties

The boundary is simple.

Hausdorff dimension 4 in the interior, 2 in the boundary.

Homeomorphic to the two dimensional disk.

Links with the Brownian map.
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Brownian Disk

Figure: Uniform quadrangulation with a boundary 30k interior faces, 173 edges in the
boundary.
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Uniform ST map

Let qSTf be uniformly chosen in the set of ST quadrangulations with f faces.

The conjectured scaling limit of these objects should be related to continuum
Liouville quantum gravity.

Recently it has been shown that there exists a constant 0.275 ≤ χ ≤ 0.288,
such that the expected diameter is of order nχ (Ding & Gwynne ’18,
Gwynne, Holden & Sun ’16).

In the case of convergence as a metric space, there is evidence that the limit
is not the Brownian map.

There exists a local limit for this object and other decorated-families
(Sheffield ’11).
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Uniform ST decorated-quadrangulation ”Scaling limit”

Figure: Uniform spanning tree-decorated quadrangulation 30k faces.
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Motivation

1 Uniform (f ,m) tree-decorated quadrangulation model is that it interpolates
between uniform quadrangulation with f faces and the uniform ST-decorated
quadrangulation with f faces.
In light of this effect, we hope to give a phase transition between these
objects obtaining an insight about the metric scaling limit of uniform ST map.

2 This model could encode two different statistical mechanic objects, one on
the tree and one on the map without considering the tree.
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Local limit results

What happens if we glue the UIHPQS (local limit of quadrangulations
with a simple boundary) with t∞ (local limit of uniform trees)?

Sequential gluing, tool used to define a peeling.

+ −→

Figure: First step in the sequential gluing procedure. The second step is sketched with
the next edges in the contour to glue in blue.

Proposition (F. & Sepúlveda ’18+)

There exists a local limit for the gluing of an infinite tree t with a UIHPQS .

Remark
We obtain more local limits.
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Scaling limit results

Corollary (F. & Sepúlveda ’18+)

Let (mf , tmf
) be a uniform (f ,mf ) tree-decorated quadrangulations with

mf ≤ f + 1. Then as mf →∞,(
tmf

,
dtmf

m
1/2
f

)
(d)−−−−→
GH

CRT .
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Scaling limit conjecture

Conjecture (F. & Sepúlveda ’18+)

Let (mf , tmf
) be a uniform (f ,mf ) tree-decorated quadrangulation with

mf = O(f α). Depending on α

(
(mf , tmf

),
dmf

f β

)
(d)−−−−→
GH


Brownian map if α ≤ 1/2, β = 1/4(Proved)

Shocked map if α = 1/2, β = 1/4(In progress)

Tree-decorated map if α ≥ 1/2,

β =
(
2χ− 1

2

)
α− χ+ 1

2

The Shocked map is not trivial (Proved).

The Shocked map should be the gluing between a Brownian disk with
perimeter p and a CRT.

The Shocked map has Hausdorff dimension 4 outside the tree (Proved).

It should have dimension 2 on the decoration (In progress).

Homeomorphic to the two dimensional sphere (In progress).
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Shocked map

Figure: Uniform tree-decorated quadrangulation 90k faces decorated on a tree of size 500.
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Why shocked?
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Figure: Golf field struck by lightning.
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Thank you!
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