Random subtree generation of a given graph

Luis Fredes
(Work with J.F. Marckert)

ERC GeoBrown
CIRM, january 2021

Conformally invariant scaling limits: an overview and a collection of problems

Oded Schramm

2.5. Lattice trees. We now present an example of a discrete model where we suspect that perhaps conformal invariance might hold. However, we do not presently have a candidate for the scaling limit.

Fix $n \in \mathbb{N}_{+}$, and consider the collection of all trees contained in the grid G that contain the origin and have n vertices. Select a tree T from this measure, uniformly at random.
Problem 2.8. What is the growth rate of the expected diameter of such a tree? If we rescale the tree so that the expected (or median) diameter is 1 , is there a limit for the law of the tree as $n \rightarrow \infty$? What are its geometric and topological properties? Can the limit be determined?

It would be good to be able to produce some pictures. However, we presently do not know how to sample from this measure.
Problem 2.9. Produce an efficient algorithm which samples lattice trees approximately uniformly, or prove that such an algorithm does not exist.

Figure: Subtree of size 20 containing the origin on \mathbb{Z}^{2}.

[^0]

(a) tree-decorated quad. 10 faces, tree of size 6.

(b) Unif. tree-decorated quad. 90 k faces and tree of size 500 .

We try to contribute to Schramm's question in different ways:

- Trying to generalize known algorithms to a target size.
- Sampling (approx.) from the uniform measure in the set of subtrees of given size.
- Estimate scaling exponents.
- A new combinatorial proof of the Aldous-Broder theorem.

Chart of algorithms

SubTree $(G, r, n)=$ set of subtrees of G containing r of size n. SubTree $(G, r)=\bigcup_{n=1}^{|V|} \operatorname{SubTree}(G, r, n)$

Chart of algorithms

SubTree $(G, r, n)=$ set of subtrees of G containing r of size n.

$$
\operatorname{SubTree}(G, r)=\bigcup_{n=1}^{|V|} \operatorname{SubTree}(G, r, n)
$$

Chart of algorithms

SubTree $(G, r, n)=$ set of subtrees of G containing r of size n.

$$
\operatorname{SubTree}(G, r)=\bigcup_{n=1}^{|V|} \operatorname{SubTree}(G, r, n)
$$

I. Local election to sample one vertex

If we cannot uniformly sample in $\operatorname{SubTree}(G, r, n)$ for G when it is a tree, we are hopeless!

I. Local election to sample one vertex

If we cannot uniformly sample in $\operatorname{SubTree}(G, r, n)$ for G when it is a tree, we are hopeless!

I. Local election to sample one vertex

If we cannot uniformly sample in $\operatorname{SubTree}(G, r, n)$ for G when it is a tree, we are hopeless!

I. Local election to sample one vertex

If we cannot uniformly sample in $\operatorname{SubTree}(G, r, n)$ for G when it is a tree, we are hopeless!

I. Local election to sample one vertex

If we cannot uniformly sample in $\operatorname{SubTree}(G, r, n)$ for G when it is a tree, we are hopeless!

I. Local election to sample one vertex

If we cannot uniformly sample in $\operatorname{SubTree}(G, r, n)$ for G when it is a tree, we are hopeless!

I. Local election to sample one vertex

If we cannot uniformly sample in $\operatorname{SubTree}(G, r, n)$ for G when it is a tree, we are hopeless!

I. Local election to sample one vertex

If we cannot uniformly sample in $\operatorname{SubTree}(G, r, n)$ for G when it is a tree, we are hopeless!

I. Local election to sample one vertex

If we cannot uniformly sample in $\operatorname{SubTree}(G, r, n)$ for G when it is a tree, we are hopeless!

I. Local election to sample one vertex

If we cannot uniformly sample in $\operatorname{SubTree}(G, r, n)$ for G when it is a tree, we are hopeless!

I. Local election to sample one vertex

If we cannot uniformly sample in $\operatorname{SubTree}(G, r, n)$ for G when it is a tree, we are hopeless!

I. Local election to sample one vertex

If we cannot uniformly sample in $\operatorname{SubTree}(G, r, n)$ for G when it is a tree, we are hopeless!

I. Local election to sample one vertex

If we cannot uniformly sample in $\operatorname{SubTree}(G, r, n)$ for G when it is a tree, we are hopeless!

I. Local election to sample one vertex

If we cannot uniformly sample in $\operatorname{SubTree}(G, r, n)$ for G when it is a tree, we are hopeless!

I. Local election to sample one vertex

If we cannot uniformly sample in $\operatorname{SubTree}(G, r, n)$ for G when it is a tree, we are hopeless!

I. Local election to sample one vertex

If we cannot uniformly sample in $\operatorname{SubTree}(G, r, n)$ for G when it is a tree, we are hopeless!

I. Local election to sample one vertex

If we cannot uniformly sample in $\operatorname{SubTree}(G, r, n)$ for G when it is a tree, we are hopeless!

15

Theorem (Metivier-Saheb-Zemmari ('05) and Marckert-Saheb-Zemmari ('08))

The last vertex is uniform on V.

Theorem (Metivier-Saheb-Zemmari ('05) and Marckert-Saheb-Zemmari ('08))

The last vertex is uniform on V.
What is the distribution of the tree obtained by this method when n nodes remain (A.K.A. Evaporation (T, n))?

Theorem (Metivier-Saheb-Zemmari ('05) and Marckert-Saheb-Zemmari ('08))

The last vertex is uniform on V.
What is the distribution of the tree obtained by this method when n nodes remain (A.K.A. Evaporation (T, n))?

Proposition (F.- Marckert ('21+))

Let T be a tree on N vertices. Then

$$
\mathbb{P}(\operatorname{Evaporation}(T, n)=t)=\frac{(|L(t)|-1)!(N-n)!}{(|L(t)|+N-n)!} \sum_{v \in L(t)}\left|\Delta_{v}\right|
$$

where $L(t)$ is the set of leaves of t and Δ_{v} is the c.c. in $T-t$ attached to v.

Figure: Tree of size 6 in the algorithm. Only the green one is considered in the probability.

Proof idea

Consider a collection $\left(X_{s}^{j}\right)_{j \in \mathbb{N}}$ of exponential r.v. of parameter s, then

$$
\begin{aligned}
m_{n} & :=\min \left\{X_{1}^{j}: j \in\{1,2, \ldots, n\}\right\} \\
M_{n} & :=\max \left\{X_{1}^{j}: j \in\{1,2, \ldots, n\}\right\} \\
& =m_{n}+M_{n}-m_{n} \\
& ={ }^{d} m_{n}+M_{n-1} \\
& ={ }^{d} X_{n}^{1}+M_{n-1}
\end{aligned}
$$

Figure: Tree of size 6 in the algorithm. Only the green one is considered in the probability.

Proof idea

Consider a collection $\left(X_{s}^{j}\right)_{j \in \mathbb{N}}$ of exponential r.v. of parameter s, then

$$
\begin{aligned}
m_{n} & :=\min \left\{X_{1}^{j}: j \in\{1,2, \ldots, n\}\right\} \\
M_{n} & :=\max \left\{X_{1}^{j}: j \in\{1,2, \ldots, n\}\right\} \\
& =m_{n}+M_{n}-m_{n} \\
& ={ }^{d} m_{n}+M_{n-1} \\
& ={ }^{d} X_{n}^{1}+M_{n-1}
\end{aligned}
$$

Figure: A tree Evaporation $(T, 1000)$ on T a UST of resp. $(\mathbb{Z} / 500 \mathbb{Z})^{2}$ and $(\mathbb{Z} / 4000 \mathbb{Z})^{2}$

II. Markov Chain in SubTree(G, r, n)

Fact: Reversible + symmetric Markov kernel \Longrightarrow Uniform measure is the unique invariant measure.

The fastest we obtained in practice: Starting from the tree $X_{i}=t \in \operatorname{SubTree}(G, r, n)$, the tree X_{i+1} is defined as follows:
(1) Pick the oriented edge $\vec{e}=\left(u, u^{\prime}\right)$, where u is a uniform vertex, and conditional on u, u^{\prime} is a uniform neighbor of u.
(2) Add e to t :
(1) The addition of \vec{e} creates a new leaf: Pick $\vec{e}^{\prime}=\left(v, v^{\prime}\right)$ indep. of \vec{e}, following the same procedure to sample \vec{e}.
If $t \cup\{e\} \backslash\left\{e^{\prime}\right\}$ is a tree without the suppression of r, then $X_{i+1}=t \cup\{e\} \backslash\left\{e^{\prime}\right\}$, else $X_{i+1}=t$.
(2) The addition of \vec{e} creates a cycle: sample an edge e^{\prime} according to BreakCycle $(t \cup\{e\}, e)(\cdot)$ and define $X_{i+1}=t \cup\{e\} \backslash\left\{e^{\prime}\right\}$.

- Otherwise: $X_{n+1}=t$

II. Markov Chain in SubTree(G, r, n)

Fact: Reversible + symmetric Markov kernel \Longrightarrow Uniform measure is the unique invariant measure.

The fastest we obtained in practice: Starting from the tree $X_{i}=t \in \operatorname{SubTree}(G, r, n)$, the tree X_{i+1} is defined as follows:
(1) Pick the oriented edge $\vec{e}=\left(u, u^{\prime}\right)$, where u is a uniform vertex, and conditional on u, u^{\prime} is a uniform neighbor of u.
(2) Add e to t :
(1) The addition of \vec{e} creates a new leaf: Pick $\vec{e}^{\prime}=\left(v, v^{\prime}\right)$ indep. of \vec{e}, following the same procedure to sample \vec{e}. If $t \cup\{e\} \backslash\left\{e^{\prime}\right\}$ is a tree without the suppression of r, then $X_{i+1}=t \cup\{e\} \backslash\left\{e^{\prime}\right\}$, else $X_{i+1}=t$.
(0 The addition of \vec{e} creates a cycle: sample an edge e^{\prime} according to BreakCycle $(t \cup\{e\}, e)(\cdot)$ and define $X_{i+1}=t \cup\{e\} \backslash\left\{e^{\prime}\right\}$.

- Otherwise: $X_{n+1}=t$

We impose (for reversibility purposes) for all graph g with excess 1 and for each pair of edges in the unique cycle that

$$
\operatorname{BreakCycle}(g, e)\left(e^{\prime}\right)=\operatorname{BreakCycle}\left(g, e^{\prime}\right)(e)
$$

II.1. Films

Figure: 1 M and 100 M iteration by frame.
$T_{n}=$ Uniform element in SubTree $\left((\mathbb{Z} / n \mathbb{Z})^{2}, n\right)$
$\mathrm{W}(t)(\mathrm{H}(t))=$ cols (lines) of $(\mathbb{Z} / n \mathbb{Z})^{2}$ containing at least one vertex of t. $\mathrm{q}_{i}\left(T_{n}\right)=$ proportion of vertices of degree i in T_{n}.

Conjecture

(1) There exists $\alpha \in[0.63,0.67]$ s.t.

$$
n^{-\alpha}\left(\mathrm{W}\left(T_{n}\right), \mathrm{H}\left(T_{n}\right)\right) \xrightarrow[n \rightarrow \infty]{(d)}(\boldsymbol{W}, \boldsymbol{H}) \quad \text { non trivial r.v. }
$$

(2) There exists $\beta \in[3 / 4-0.01,3 / 4+0.01]$ s.t.

$$
n^{-\beta} d_{T_{n}}\left(u_{n}, v_{n}\right) \xrightarrow[n \rightarrow \infty]{(d)} \boldsymbol{D} \quad \text { real r.v. a.s. non zero, }
$$

where u_{n} and v_{n} are independent uniformly chosen vertices of T_{n}.
(3) There exists a constant vector satisfying $\boldsymbol{q}_{1} \in[0.2585 \pm 0.001]$, $\boldsymbol{q}_{2} \in[0.506 \pm 0.001], \boldsymbol{q}_{3} \in[0.214 \pm 0.001], \boldsymbol{q}_{4} \in[0.02185 \pm 0.001]$

$$
\left(\mathrm{q}_{1}\left(T_{n}\right), \mathrm{q}_{2}\left(T_{n}\right), \mathrm{q}_{3}\left(T_{n}\right), \mathrm{q}_{4}\left(T_{n}\right)\right) \xrightarrow[n \rightarrow \infty]{\text { proba }}\left(\mathrm{q}_{1}, \mathrm{q}_{2}, \mathrm{q}_{3}, \mathrm{q}_{4}\right)
$$

II.1. Simulation results

$T_{n}=$ Uniform element in SubTree $\left((\mathbb{Z} / n \mathbb{Z})^{2}, n\right)$
$\mathrm{W}(t)(\mathrm{H}(t))=$ cols (lines) of $(\mathbb{Z} / n \mathbb{Z})^{2}$ containing at least one vertex of t. $\mathrm{q}_{i}\left(T_{n}\right)=$ proportion of vertices of degree i in T_{n}.

tree size	1000	2500	5000	8100
number of simulations	5039	5486	6111	5232
Initial rectangle tree shape	40×25	50×50	50×100	90×90
Nb Steps of the chain	$150 M$	$1 G$	$25 G$	$200 G$

To estimate the exponents we use

$$
\alpha \sim \log \left(\operatorname{Mean}\left(W\left(T_{n}\right)\right) / \operatorname{Mean}\left(W\left(T_{m}\right)\right)\right) / \log (n / m)
$$

(n, m)	$(1000,2500)$	$(2500,5000)$	$(5000,8100)$
Estimation of α (median)	0.641	0.654	0.644
Estimation of α (mean)	0.642	0.657	0.638
Estimation of β (median)	0.756	0.735	0.751
Estimation of β (mean)	0.746	0.746	0.754

II.1. Simulation results

$T_{n}=$ Uniform element in SubTree $\left((\mathbb{Z} / n \mathbb{Z})^{2}, n\right)$
$\mathrm{W}(t)(\mathrm{H}(t))=$ cols (lines) of $(\mathbb{Z} / n \mathbb{Z})^{2}$ containing at least one vertex of t. $\mathrm{q}_{i}\left(T_{n}\right)=$ proportion of vertices of degree i in T_{n}.

Degree proportion	T_{n}	Spanning Tree
q_{1}	≈ 0.2585	$\frac{8}{\pi^{2}}\left(1-\frac{2}{\pi}\right) \approx 0.294$
q_{2}	≈ 0.506	$\frac{4}{\pi}\left(2-\frac{9}{\pi}+\frac{12}{\pi^{2}}\right) \approx 0.447$
q_{3}	≈ 0.214	$2\left(1-\frac{2}{\pi}\right)\left(2-\frac{6}{\pi}+\frac{12}{\pi^{2}}\right) \approx 0.222$
q_{4}	≈ 0.02185	$\left(\frac{4}{\pi}-1\right)\left(1-\frac{2}{\pi}\right) \approx 0.036$

Both Wilson's algorithm and Aldous-Broder algorithm sample from the uniform distribution when we consider simple random walks, but they are more general.

Both Wilson's algorithm and Aldous-Broder algorithm sample from the uniform distribution when we consider simple random walks, but they are more general.

Consider a Markov kernel M with unique invariant distribution ρ.

Both Wilson's algorithm and Aldous-Broder algorithm sample from the uniform distribution when we consider simple random walks, but they are more general.

Consider a Markov kernel M with unique invariant distribution ρ.
Sometimes we consider the edges of (t, r) oriented towards the root, we write \vec{e}.

III.1. Wilson (Cycle popping version)

Figure: Pick any vertex as root (square vertex)

III.1. Wilson (Cycle popping version)

Figure: Pick one outgoing edge for each $v \in V \backslash\{r\}$ following the markov kernel M.

III.1. Wilson (Cycle popping version)

Figure: The oriented edges induce a graph.

III.1. Wilson (Cycle popping version)

Figure: If there is a cycle pick one and re-sample the outgoing edges of the vertices on it.
III.1. Wilson (Cycle popping version)

Figure: Induced graph.
III.1. Wilson (Cycle popping version)

Figure: Pick a cycle and resample again.
III.1. Wilson (Cycle popping version)

III.1. Wilson (Cycle popping version)

III.1. Wilson (Cycle popping version)

Figure: Stop when there is no more cycle, i.e. a tree.

III.1. Wilson (Cycle popping version)

Figure: Heap of cycles \times Tree

Call $(\mathcal{H}, \mathcal{T})$ the r.v. associated to the heap of cycles and rooted tree of the cycle popping.

Theorem (Wilson ('96))

For any finite graph the cycle popping ends with probability 1. Moreover, for any heap of cycles H and any tree $T \in \operatorname{SubTree}(G, r,|V|)$ one has

$$
\mathbb{P}((\mathcal{H}, \mathcal{T})=(H, T))=\mathbb{P}(\mathcal{H}=H) \mathbb{P}(\mathcal{T}=T)=P(H) P(T),
$$

where for any multiset of oriented edges $P(S)=\prod_{\vec{e} \in S} M_{\vec{e}}$.

Fix a root $r \in V$ and associate to each vertex in $V \backslash\{r\}$ a random uniform outgoing edge. Call τ the connected component of the root.

Figure: Simulation of τ on $(\mathbb{Z} / 100 \mathbb{Z})^{2}, 3536949$ simulations were needed to get a tree of size at least 100.

Fix a root $r \in V$ and associate to each vertex in $V \backslash\{r\}$ a random uniform outgoing edge. Call τ the connected component of the root.

Figure: Simulation of τ on $(\mathbb{Z} / 100 \mathbb{Z})^{2}, 3536949$ simulations were needed to get a tree of size at least 100.

Problem!

The distribution of $(\tau||\tau|=n)$ does not have full support in general. The connected components different from τ have one cycle, then they cannot have size 1.

Combinatorial prelude

- Inversion lemma Wilson's algorithm construct all possible heap of cycles which do not contain r, summing over this set

$$
\sum_{H} P(H)=\frac{1}{\sum_{H \text { trivial }} P(H)}=\frac{1}{\operatorname{det}\left(I-M^{(r)}\right)}
$$

- Matrix tree theorem

$$
\operatorname{det}\left(I-M^{(r)}\right)=\sum_{T \in \text { SubTree }(G, r,|V|)} P(T)
$$

To keep in mind

The output tree \mathcal{T} satisfies

$$
\mathbb{P}(\mathcal{T}=T)=\frac{\prod_{\vec{e} \in t} M_{\vec{e}}}{\operatorname{det}\left(I-M^{(r)}\right)}
$$

where each edge \vec{e} in T is oriented towards the root r

III.2. UST: Aldous-Broder

Consider an M-walk W in the invariant regime started at $r \in V$ up to the cover time.
Denote by FirstEntrance $(W)=(t, r)$, where r is the starting point of W and t is the spanning tree formed by the first edge used to visit each vertex.

III.2. Extension to the non-reversible case

Theorem (Aldous-Broder ('89))

For M positive and reversible Markov kernel with invariant distribution ρ. For any $T \in \operatorname{SubTree}(G, r,|V|)$ one has

$$
\mathbb{P}(\text { FirstEntrance }(W)=(T, r))=\frac{\prod_{\vec{e} \in t} M_{\vec{e}}}{\sum_{w \in V} \operatorname{det}\left(I-M^{(w)}\right)},
$$

III.2. Extension to the non-reversible case

Theorem (Aldous-Broder ('89))

For M positive and reversible Markov kernel with invariant distribution ρ. For any $T \in \operatorname{SubTree}(G, r,|V|)$ one has

$$
\mathbb{P}(\text { FirstEntrance }(W)=(T, r))=\frac{\prod_{\vec{e} \in t} M_{\vec{e}}}{\sum_{w \in V} \operatorname{det}\left(I-M^{(w)}\right)},
$$

Define for a Markov kernel M with unique invariant measure ρ, the Markov kernel \overleftarrow{M} as

$$
\overleftarrow{M}_{x, y}=\rho_{y} / \rho_{x} M_{y, x}
$$

III.2. Extension to the non-reversible case

Theorem (Aldous-Broder ('89))

For M positive and reversible Markov kernel with invariant distribution ρ. For any $T \in \operatorname{SubTree}(G, r,|V|)$ one has

$$
\mathbb{P}(\text { FirstEntrance }(W)=(T, r))=\frac{\prod_{\vec{e} \in t} M_{\vec{e}}}{\sum_{w \in V} \operatorname{det}\left(I-M^{(w)}\right)},
$$

Define for a Markov kernel M with unique invariant measure ρ, the Markov kernel \overleftarrow{M} as

$$
\overleftarrow{M}_{x, y}=\rho_{y} / \rho_{x} M_{y, x}
$$

Theorem (F.- Marckert ('21+))

For M positive with invariant distribution ρ. For any $T \in \operatorname{SubTree}(G, r,|V|)$ one has

$$
\mathbb{P}(\text { FirstEntrance }(W)=(T, r))=\frac{\prod_{\vec{e} \in t} \overleftarrow{M}_{\vec{e}}}{\sum_{w \in V} \operatorname{det}\left(I-\overleftarrow{M}^{(w)}\right)},
$$

Both normalization constants are the same. In particular

$$
\operatorname{det}\left(I-M^{(v)}\right)=\operatorname{det}\left(I-\overleftarrow{M}^{(v)}\right)
$$

since for \vec{C} oriented cycle $\prod_{\vec{e} \in \vec{C}} M_{\vec{e}}=\prod_{\vec{e} \in \overleftarrow{C}} \overleftarrow{M}_{\vec{e}}$.
Numerators are different when ρ is not reversible with respect to M.
The edges are directed from each node u toward its direct ancestor $a(u)$. For a tree $t \in \operatorname{SubTree}(G, r)$,

$$
\begin{gathered}
\prod_{\vec{e} \in t} M_{\vec{e}}=\prod_{u \in t \neq\{r\}} M_{u, a(u)}=\text { Const. } \rho_{r} \prod_{u \in t \neq\{r\}} \rho_{u} M_{u, a(u)} \\
\prod_{\vec{e} \in t} \overleftarrow{M}_{\vec{e}}=\prod_{u \in t \neq\{r\}}\left[M_{a(u), u} \rho_{a(u)} / \rho_{u}\right]=\text { Const. } \rho_{r} \prod_{u \in t \neq\{r\}} \rho_{a(u)} M_{a(u), u}
\end{gathered}
$$

The Aldous-Broder proof is purely probabilistic!

Consider the following chain $X_{i}=(t, r)$. To define X_{i+1} do as follows

Figure: $X_{i}=(t, r)$

The Aldous-Broder proof is purely probabilistic!

Consider the following chain $X_{i}=(t, r)$. To define X_{i+1} do as follows

Figure: Orient the edges towards r

The Aldous-Broder proof is purely probabilistic!

Consider the following chain $X_{i}=(t, r)$. To define X_{i+1} do as follows

Figure: Make a step from the root following the kernel M.

The Aldous-Broder proof is purely probabilistic!

Consider the following chain $X_{i}=(t, r)$. To define X_{i+1} do as follows

Figure: Suppress the outgoing edge in the destination point

The Aldous-Broder proof is purely probabilistic!

Consider the following chain $X_{i}=(t, r)$. To define X_{i+1} do as follows

Figure: Change the root to the destination point

The Aldous-Broder proof is purely probabilistic!

Consider the following chain $X_{i}=(t, r)$. To define X_{i+1} do as follows

Figure: Define this resulting rooted tree as X_{i+1}

Two facts:

- For w a deterministic walk up to the cover time one has

FirstEntrance $(w)=\operatorname{LastExit}(\overleftarrow{w})$

- Markov chain tree theorem

$$
\rho_{v}=\frac{\sum_{t \in \operatorname{SubTree}(G, v,|V|)} \prod_{\vec{e} \in t} \overleftarrow{M}_{\vec{e}}}{Z}=\frac{\operatorname{det}\left(I-M^{(v)}\right)}{Z}
$$

Two facts:

- For w a deterministic walk up to the cover time one has

FirstEntrance $(w)=\operatorname{LastExit}(\overleftarrow{w})$

- Markov chain tree theorem

$$
\rho_{v}=\frac{\sum_{t \in \operatorname{SubTree}(G, v,|V|)} \prod_{\vec{e} \in t} \overleftarrow{M}_{\vec{e}}}{Z}=\frac{\operatorname{det}\left(I-M^{(v)}\right)}{Z}
$$

The proof uses a coupling from the past argument + both precedent facts.

Denote by $\operatorname{Pionner}(W)=($ FirstEntrance $(W), L)$ where L is the labeling. $H_{D}(a, b)=$ probability starting from a that a walk following M escapes D at b. $\overleftarrow{H}_{D}(a, b)=$ probability starting from a that a walk following \overleftarrow{M} escapes D at b.

$$
\begin{aligned}
& \mathbb{P}(\operatorname{Pionner}(W)=((t, r), \ell)) \\
& =\mathbb{1}_{\ell_{0}=r} \rho_{\ell} \prod_{i=0}^{n-2}\left[H_{\left\{\ell_{\leq i}\right\}}\left(\ell_{i}, a\left(\ell_{i+1}\right)\right) M_{a\left(\ell_{i+1}\right), \ell_{i+1}}\right] \\
& =\left(\mathbb{1}_{\ell_{0}=r} \rho_{\ell_{n-1}} \prod_{i=0}^{n-2}\left[\overleftarrow{H}_{\left\{\ell_{\leq i}\right\}}\left(a\left(\ell_{i+1}\right), \ell_{i}\right)\right] z\right) \frac{\prod_{\vec{e} \in t} \overleftarrow{M}_{\vec{e}}}{Z}
\end{aligned}
$$

III.2. Combinatorial proof

Can we prove using combinatorics that

$$
\sum_{\ell} \mathbb{1}_{\ell_{0}=r} \rho_{\ell_{n-1}} \prod_{i=0}^{n-2}\left[\overleftarrow{H}_{\left\{\ell_{\leq i}\right\}}\left(a\left(\ell_{i+1}\right), \ell_{i}\right)\right] Z=1 ?
$$

(the sum ranges over all decreasing labelings of the tree)

III.2. Combinatorial proof

Can we prove using combinatorics that

$$
\sum_{\ell} \mathbb{1}_{\ell_{0}=r} \rho_{\ell_{n-1}} \prod_{i=0}^{n-2}\left[\overleftarrow{H}_{\left\{\ell_{\leq i}\right\}}\left(a\left(\ell_{i+1}\right), \ell_{i}\right)\right] Z=1 ?
$$

(the sum ranges over all decreasing labelings of the tree)
The Markov chain tree Theorem gives that $\rho_{v}=\operatorname{det}\left(I-M^{(v)}\right) / Z$, so equivalently

$$
\sum_{\ell} \mathbb{1}_{\ell_{\mathbf{0}}=r} \prod_{i=0}^{n-2}\left[\overleftarrow{H}_{\left\{\ell_{\leq i}\right\}}\left(a\left(\ell_{i+1}\right), \ell_{i}\right)\right] \operatorname{det}\left(I-M^{\left(\ell_{n-\mathbf{1}}\right)}\right)=1 ?
$$

Figure: Path seen backward as a heap of outgoing edges

Figure: The tree edges are always on top of the piles.

Figure: Count the incoming and outgoing edges

Figure: Pop-out the tree edges to construct H^{-t} (update (In,Out))

Figure: Convenient to keep an eye on (In,Out-In)

Figure: Play golf!

Figure: Supress the path and update (In,Out-In)

Figure: Let the pieces fall

Figure: Continue playing golf with next emitting vertex.

Figure: Supress the path and update (In,Out-In)

Figure: Let the pieces fall

Figure: heap of cycles

The heap of outgoing edges H^{-t} is a heap only on $V \backslash \ell_{n+1}$ and $H^{-t}=$ Golf $\times H C$. Recall we fix a treatment order to fix an ordering of the starting points in the Golf game.

$$
\sum_{\ell} \mathbb{1}_{\ell_{0}=r} \prod_{i=0}^{n-2}\left[\overleftarrow{H}_{\ell \leq i}\left(a\left(\ell_{i+1}\right), \ell_{i}\right)\right] \operatorname{det}\left(I-M^{\left(\ell_{n-1}\right)}\right)
$$

The heap of outgoing edges H^{-t} is a heap only on $V \backslash \ell_{n+1}$ and $H^{-t}=$ Golf $\times H C$. Recall we fix a treatment order to fix an ordering of the starting points in the Golf game.

$$
\begin{aligned}
& \sum_{\ell} \mathbb{1}_{\ell_{0}=r} \prod_{i=0}^{n-2}\left[\overleftarrow{H}_{\ell \leq i}\left(a\left(\ell_{i+1}\right), \ell_{i}\right)\right] \operatorname{det}\left(I-M^{\left(\ell_{n-1}\right)}\right) \\
& =\sum_{H^{-t} \text { valid }} W\left(H^{-t}\right) \operatorname{det}\left(I-M^{\left(\ell_{n-1}\right)}\right)
\end{aligned}
$$

The heap of outgoing edges H^{-t} is a heap only on $V \backslash \ell_{n+1}$ and $H^{-t}=$ Golf $\times H C$. Recall we fix a treatment order to fix an ordering of the starting points in the Golf game.

$$
\begin{aligned}
& \sum_{\ell} \mathbb{1}_{\ell_{0}=r} \prod_{i=0}^{n-2}\left[\overleftarrow{H}_{\ell_{\leq i}}\left(a\left(\ell_{i+1}\right), \ell_{i}\right)\right] \operatorname{det}\left(I-M^{\left(\ell_{n-1}\right)}\right) \\
& =\sum_{H^{-t} \text { valid }} W\left(H^{-t}\right) \operatorname{det}\left(I-M^{\left(\ell_{n-1}\right)}\right) \\
& =\sum_{(G o l f, H C) \text { valid }} W(G o l f) \times W(H C) \operatorname{det}\left(I-M^{\left(\ell_{n-1}\right)}\right)
\end{aligned}
$$

The heap of outgoing edges H^{-t} is a heap only on $V \backslash \ell_{n+1}$ and $H^{-t}=$ Golf $\times H C$. Recall we fix a treatment order to fix an ordering of the starting points in the Golf game.

$$
\begin{aligned}
& \sum_{\ell} \mathbb{1}_{\ell_{0}=r} \prod_{i=0}^{n-2}\left[\overleftarrow{H}_{\ell_{\leq i}}\left(a\left(\ell_{i+1}\right), \ell_{i}\right)\right] \operatorname{det}\left(I-M^{\left(\ell_{n-1}\right)}\right) \\
& =\sum_{H^{-t} \text { valid }} W\left(H^{-t}\right) \operatorname{det}\left(I-M^{\left(\ell_{n-1}\right)}\right) \\
& =\sum_{(\text {Golf }, H C) \text { valid }} W(\text { Golf }) \times W(H C) \operatorname{det}\left(I-M^{\left(\ell_{n-1}\right)}\right) \\
& =\underbrace{\sum_{=1} W(\text { Golf })}_{=1} \times \underbrace{\left(\sum_{\begin{array}{c}
\text { HC heap of cycles } \\
\text { Got containing } \ell_{n-1}
\end{array}} W(H C)\right) \operatorname{det}\left(I-M^{\left(\ell_{n-1}\right)}\right)}
\end{aligned}
$$

The first by a probabilistic algorithm.

III.2. Consequences of the labeled extension

Corollary (F.-Marckert ('21+))

If W is a SRW stopped when $m<|V|$ vertices has been discovered, then the tree FirstEntrance(W) is not uniform in SubTree (G, r, m).

Consider τ_{A} as the hitting time of the set A and recall that for a rooted tree (t, r) we let $a(v)$ denote the ancestor of v towards the root.

Proposition (F.-Marckert ('21+))

For any spanning tree t of G we have

$$
\sum_{\ell} \prod_{i=0}^{n-2} \mathbb{P}_{a\left(\ell_{i+1}\right)}\left(\overleftarrow{\tau}_{\left\{\ell_{i}\right\}}<\overleftarrow{\tau}_{\left\{\ell_{i+1}, \ldots, \ell_{n-1}\right\}}\right)=1
$$

where the sum ranges over the set of decreasing labeling of (t, r).
Moreover, this is not true if t is not a spanning tree.

IV. Markov Chain in SubTree(G, r)

Assume $X_{i}=t$ is an element of $\operatorname{SubTrees}(G, r)$. To define X_{i+1}, proceed as follows. Pick independently, a random edge $\vec{e} \sim \operatorname{Uniform}(\vec{E}(G))$ and "a random choice c" satisfying

$$
\mathbb{P}(\mathbf{c}=+1)=p_{|t|}, \quad \mathbb{P}(\mathbf{c}=0)=q_{|t|}, \quad \mathbb{P}(\mathbf{c}=-1)=r_{|t|}
$$

- if $\mathbf{c}=+1$ then "try to add e ": if $t \cup\{e\}$ is a tree, set $X_{i+1}=t \cup\{e\}$. If it has a cycle, then pick X_{i+1} according to $\operatorname{BreakCycle}(t \cup\{e\}, e)$, else $X_{i+1}=t$.
- if $\mathbf{c}=0$, do nothing, and set $X_{i+1}=t$,
- if $\mathbf{c}=-1$, then "try to remove \vec{e} ': set $X_{i+1}=t \backslash \vec{e}$ if it is a tree and does not remove the root r, else $X_{i+1}=t$.

II.2. Markov Chain in SubTree(G, r)

Proposition (F.-Marckert ('21))

The MC previously defined is reversible and its unique invariant measure ρ_{r} on SubTree (G, r) gives the same weight ν_{n} to each element in $\operatorname{SubTree}(G, r, n)$, for all $1 \leq n \leq|V|$, that is $\rho_{t}=\nu_{|t|}$. The sequence $\nu_{k}: k \in\{1,2, \ldots,|V|\}$ satisfies:

$$
\begin{aligned}
& \nu_{m}=\nu_{1} \prod_{i=2}^{m}\left(\frac{p_{i-1}}{r_{i}}\right), \quad \forall m \in\{2,3, \ldots,|V|\} \\
& \sum_{n=1}^{|V|} \nu_{n}|\operatorname{SubTree}(G, r, n)|=1
\end{aligned}
$$

Remark

- Tunning p, r, q one can target a size w.h.p. even concentrate in an interval.
- Conditioning on the size of the tree, we obtain the uniform distribution + simple conditions on p, q, r.

II.2. Subcase: the graph G is a tree.

We obtain a coupling from the past and we give explicit bounds on the coupling time.

Hypothesis $\mathrm{M}: p_{1} \leq p_{2} \leq \cdots \leq p_{|V|-1}$

$$
r_{2} \geq \ldots \geq r_{|V|}
$$

II.2. Subcase: the graph G is a tree.

We obtain a coupling from the past and we give explicit bounds on the coupling time.

Hypothesis $\mathrm{M}: p_{1} \leq p_{2} \leq \cdots \leq p_{|V|-1}$

(a) Initialization

II.2. Subcase: the graph G is a tree.

We obtain a coupling from the past and we give explicit bounds on the coupling time.

Hypothesis $\mathrm{M}: p_{1} \leq p_{2} \leq \cdots \leq p_{|V|-1}$

(b) Intermediate phase

II.2. Subcase: the graph G is a tree.

We obtain a coupling from the past and we give explicit bounds on the coupling time.

Hypothesis $\mathrm{M}: p_{1} \leq p_{2} \leq \cdots \leq p_{|V|-1}$

(a) Initialization

(b) Intermediate phase

(c) Merged state

Other well known model stopped at the target size.

(a) FPP on the $(\mathbb{Z} / 1000 \mathbb{Z})^{2}$ with i.i.d. uniform labels on $[0,1]$. Tree size 10 k .

(d) Tree Internal DLA with 2000 vertices.

(b) Kruskal's tree of size 5 k containing on $(\mathbb{Z} / 1000 \mathbb{Z})^{\mathbf{2}}$.

(e) DLA tree with 5 k
$(\mathbb{Z} / 1000 \mathbb{Z})^{2}$.

(c) Prim's tree of size 5 k on $(\mathbb{Z} / 2000 \mathbb{Z})^{\mathbf{2}}$.

(f) Size biased forest, tree component on $(\mathbb{Z} / 2000 \mathbb{Z})^{2}$.

THANKS!

[^0]: Figure: Schramm ICM 2006.

