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Motivation: Odded Schramm question

Figure: Schramm ICM 2006.

Figure: Subtree of size 20
containing the origin on Z2.
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(a) tree-decorated quad. 10 faces, tree of size 6.

(b) Unif. tree-decorated quad. 90k faces and tree
of size 500.
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We try to contribute to Schramm’s question in different ways:
Trying to generalize known algorithms to a target size.
Sampling (approx.) from the uniform measure in the set of subtrees of given
size.
Estimate scaling exponents.
A new combinatorial proof of the Aldous-Broder theorem.
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Chart of algorithms

SubTree(G , r , n) = set of subtrees of G containing r of size n.

SubTree(G , r) =

|V |⋃
n=1

SubTree(G , r , n)

1 |V |

n

-Local election
Metivier-Saheb-Zemmari (05)
Marckert-Saheb-Zemmari (08)

-Wilson(96)
-Aldous-Broder (89)

-(Flip) Markov Chains on
SubTrees(G, r, n)

-(Flip) Markov Chains on
SubTrees(G, r)

-Extensions
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I. Local election to sample one vertex
If we cannot uniformly sample in SubTree(G , r , n) for G when it is a tree, we are
hopeless!
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I. Local election to sample one vertex
If we cannot uniformly sample in SubTree(G , r , n) for G when it is a tree, we are
hopeless!
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Theorem (Metivier-Saheb-Zemmari (’05) and
Marckert-Saheb-Zemmari (’08))
The last vertex is uniform on V .

What is the distribution of the tree obtained by this method when n nodes remain
(A.K.A. Evaporation(T , n))?

Proposition (F.- Marckert (’21+))
Let T be a tree on N vertices. Then

P(Evaporation(T , n) = t) =
(|L(t)| − 1)!(N − n)!

(|L(t)|+ N − n)!

∑
v∈L(t)

|∆v |

where L(t) is the set of leaves of t and ∆v is the c.c. in T − t attached to v .
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Figure: Tree of size 6 in the algorithm. Only the green one is considered in the
probability.

Proof idea
Consider a collection (X j

s )j∈N of exponential r.v. of parameter s, then

mn := min{X j
1 : j ∈ {1, 2, . . . , n}}

Mn := max{X j
1 : j ∈ {1, 2, . . . , n}}

= mn + Mn −mn

=d mn + Mn−1

=d X 1
n + Mn−1
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Figure: A tree Evaporation(T , 1000) on T a UST of resp. (Z/500Z)2 and (Z/4000Z)2
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II. Markov Chain in SubTree(G , r , n)
Fact: Reversible + symmetric Markov kernel =⇒ Uniform measure is the unique
invariant measure.

The fastest we obtained in practice: Starting from the tree
Xi = t ∈ SubTree(G , r , n), the tree Xi+1 is defined as follows:

1 Pick the oriented edge ~e = (u, u′), where u is a uniform vertex, and
conditional on u, u′ is a uniform neighbor of u.

2 Add e to t:
1 The addition of ~e creates a new leaf: Pick ~e′ = (v , v ′) indep. of ~e, following

the same procedure to sample ~e.
If t ∪ {e} \ {e′} is a tree without the suppression of r , then
Xi+1 = t ∪ {e} \ {e′}, else Xi+1 = t.

2 The addition of ~e creates a cycle: sample an edge e′ according to
BreakCycle(t ∪ {e}, e)(·) and define Xi+1 = t ∪ {e} \ {e′}.

3 Otherwise: Xn+1 = t

We impose (for reversibility purposes) for all graph g with excess 1 and for each
pair of edges in the unique cycle that

BreakCycle(g , e)(e′) = BreakCycle(g , e′)(e)
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II.1. Films

Figure: 1M and 100M iteration by frame.
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Tn = Uniform element in SubTree((Z/nZ)2, n)
W(t)(H(t)) = cols (lines) of (Z/nZ)2 containing at least one vertex of t.
qi (Tn) = proportion of vertices of degree i in Tn.

Conjecture
1 There exists α ∈ [0.63, 0.67] s.t.

n−α(W(Tn),H(Tn))
(d)−−−→

n→∞
(W,H) non trivial r.v.

2 There exists β ∈ [3/4− 0.01, 3/4 + 0.01] s.t.

n−βdTn(un, vn)
(d)−−−→

n→∞
D real r.v. a.s. non zero,

where un and vn are independent uniformly chosen vertices of Tn.
3 There exists a constant vector satisfying q1 ∈ [0.2585± 0.001],

q2 ∈ [0.506± 0.001], q3 ∈ [0.214± 0.001], q4 ∈ [0.02185± 0.001]

(q1(Tn), q2(Tn), q3(Tn), q4(Tn))
proba−−−→
n→∞

(q1, q2, q3, q4),
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II.1. Simulation results
Tn = Uniform element in SubTree((Z/nZ)2, n)
W(t)(H(t)) = cols (lines) of (Z/nZ)2 containing at least one vertex of t.
qi (Tn) = proportion of vertices of degree i in Tn.

To estimate the exponents we use

α ∼ log(Mean(W (Tn))/Mean(W (Tm)))/ log(n/m)
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Tn = Uniform element in SubTree((Z/nZ)2, n)
W(t)(H(t)) = cols (lines) of (Z/nZ)2 containing at least one vertex of t.
qi (Tn) = proportion of vertices of degree i in Tn.

Degree proportion Tn Spanning Tree

q1 ≈ 0.2585 8
π2

(
1− 2

π

)
≈ 0.294

q2 ≈ 0.506 4
π

(
2− 9

π + 12
π2

)
≈ 0.447

q3 ≈ 0.214 2
(
1− 2

π

) (
2− 6

π + 12
π2

)
≈ 0.222

q4 ≈ 0.02185
( 4
π − 1

) (
1− 2

π

)
≈ 0.036
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III. Spanning trees.

Both Wilson’s algorithm and Aldous-Broder algorithm sample from the
uniform distribution when we consider simple random walks, but they are more
general.

Consider a Markov kernel M with unique invariant distribution ρ.

Sometimes we consider the edges of (t, r) oriented towards the root, we
write ~e.

Luis Fredes (Université Paris-Saclay) Random subtree generation of graphs 15 / 30



III. Spanning trees.

Both Wilson’s algorithm and Aldous-Broder algorithm sample from the
uniform distribution when we consider simple random walks, but they are more
general.

Consider a Markov kernel M with unique invariant distribution ρ.

Sometimes we consider the edges of (t, r) oriented towards the root, we
write ~e.

Luis Fredes (Université Paris-Saclay) Random subtree generation of graphs 15 / 30



III. Spanning trees.

Both Wilson’s algorithm and Aldous-Broder algorithm sample from the
uniform distribution when we consider simple random walks, but they are more
general.

Consider a Markov kernel M with unique invariant distribution ρ.

Sometimes we consider the edges of (t, r) oriented towards the root, we
write ~e.

Luis Fredes (Université Paris-Saclay) Random subtree generation of graphs 15 / 30



III.1. Wilson (Cycle popping version)

Figure: Pick any vertex as root (square vertex)
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III.1. Wilson (Cycle popping version)

Figure: Pick one outgoing edge for each v ∈ V \ {r} following the markov kernel M.
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III.1. Wilson (Cycle popping version)

Figure: The oriented edges induce a graph.
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III.1. Wilson (Cycle popping version)

Figure: If there is a cycle pick one and re-sample the outgoing edges of the vertices on it.
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III.1. Wilson (Cycle popping version)

Figure: Induced graph.
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III.1. Wilson (Cycle popping version)

Figure: Pick a cycle and resample again.
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III.1. Wilson (Cycle popping version)

Figure: Stop when there is no more cycle, i.e. a tree.
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III.1. Wilson (Cycle popping version)

Figure: Heap of cycles × Tree

Call (H, T ) the r.v. associated to the heap of cycles and rooted tree of the cycle
popping.

Theorem (Wilson (’96))
For any finite graph the cycle popping ends with probability 1. Moreover, for any
heap of cycles H and any tree T ∈ SubTree(G , r , |V |) one has

P ((H, T ) = (H,T )) = P(H = H)P(T = T ) = P(H)P(T ),

where for any multiset of oriented edges P(S) =
∏
~e∈S M~e .
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Fix a root r ∈ V and associate to each vertex in V \ {r} a random uniform
outgoing edge. Call τ the connected component of the root.
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Figure: Simulation of τ on (Z/100Z)2, 3536949 simulations were needed to get a tree of
size at least 100.

Problem!
The distribution of (τ

∣∣|τ | = n) does not have full support in general. The
connected components different from τ have one cycle, then they cannot have
size 1.
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Combinatorial prelude

Inversion lemma Wilson’s algorithm construct all possible heap of cycles
which do not contain r , summing over this set∑

H

P(H) =
1∑

H trivial P(H)
=

1
det(I −M(r))

Matrix tree theorem

det(I −M(r)) =
∑

T∈SubTree(G ,r ,|V |)

P(T )

To keep in mind
The output tree T satisfies

P (T = T ) =

∏
~e∈t M~e

det(I −M(r))

where each edge ~e in T is oriented towards the root r
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III.2. UST: Aldous-Broder

Consider an M-walk W in the invariant regime started at r ∈ V up to the cover
time.
Denote by FirstEntrance(W ) = (t, r), where r is the starting point of W and t is
the spanning tree formed by the first edge used to visit each vertex.
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III.2. Extension to the non-reversible case

Theorem (Aldous-Broder (’89))
For M positive and reversible Markov kernel with invariant distribution ρ. For
any T ∈ SubTree(G , r , |V |) one has

P (FirstEntrance(W ) = (T , r)) =

∏
~e∈t M~e∑

w∈V det(I −M(w))
,

Define for a Markov kernel M with unique invariant measure ρ, the Markov kernel←−
M as ←−

M x,y = ρy/ρxMy ,x

Theorem (F.- Marckert (’21+))
For M positive with invariant distribution ρ. For any T ∈ SubTree(G , r , |V |) one
has

P (FirstEntrance(W ) = (T , r)) =

∏
~e∈t
←−
M~e∑

w∈V det(I −
←−
M (w))

,
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Both normalization constants are the same. In particular

det(I −M(v)) = det(I −
←−
M (v)),

since for ~C oriented cycle
∏
~e∈~C M~e =

∏
~e∈
←−
C

←−
M~e .

Numerators are different when ρ is not reversible with respect to M .
The edges are directed from each node u toward its direct ancestor a(u). For a
tree t ∈ SubTree(G , r),∏

~e∈t

M~e =
∏

u∈t 6={r}

Mu,a(u) = Const. ρr
∏

u∈t 6={r}

ρuMu,a(u)

∏
~e∈t

←−
M~e =

∏
u∈t 6={r}

[
Ma(u),u ρa(u)/ρu

]
= Const. ρr

∏
u∈t 6={r}

ρa(u)Ma(u),u.
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The Aldous-Broder proof is purely probabilistic!

Consider the following chain Xi = (t, r). To define Xi+1 do as follows

Figure: Xi = (t, r)
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The Aldous-Broder proof is purely probabilistic!

Consider the following chain Xi = (t, r). To define Xi+1 do as follows

Figure: Orient the edges towards r
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The Aldous-Broder proof is purely probabilistic!

Consider the following chain Xi = (t, r). To define Xi+1 do as follows

Figure: Make a step from the root following the kernel M.

Luis Fredes (Université Paris-Saclay) Random subtree generation of graphs 22 / 30



The Aldous-Broder proof is purely probabilistic!

Consider the following chain Xi = (t, r). To define Xi+1 do as follows

Figure: Suppress the outgoing edge in the destination point
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The Aldous-Broder proof is purely probabilistic!

Consider the following chain Xi = (t, r). To define Xi+1 do as follows

Figure: Change the root to the destination point
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The Aldous-Broder proof is purely probabilistic!

Consider the following chain Xi = (t, r). To define Xi+1 do as follows

Figure: Define this resulting rooted tree as Xi+1
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The Aldous-Broder proof is purely probabilistic!

Two facts:
For w a deterministic walk up to the cover time one has

FirstEntrance(w) = LastExit(←−w )

Markov chain tree theorem

ρv =

∑
t∈SubTree(G ,v ,|V |)

∏
~e∈t
←−
M~e

Z
=

det(I −M(v))

Z

The proof uses a coupling from the past argument + both precedent facts.
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III.2. Labeled extension
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Denote by Pionner(W ) = (FirstEntrance(W ), L) where L is the labeling.
HD(a, b) = probability starting from a that a walk following M escapes D at b.
←−
H D(a, b) = probability starting from a that a walk following

←−
M escapes D at b.

P(Pionner(W ) = ((t, r), `))

= 1`0=rρ`0

n−2∏
i=0

[
H{`≤i}(`i , a(`i+1))Ma(`i+1),`i+1

]
=

(
1`0=rρ`n−1

n−2∏
i=0

[←−
H {`≤i}(a(`i+1), `i )

]
Z

) ∏
~e∈t
←−
M~e

Z
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III.2. Combinatorial proof

Can we prove using combinatorics that

∑
`

1`0=rρ`n−1

n−2∏
i=0

[←−
H {`≤i}(a(`i+1), `i )

]
Z = 1?

(the sum ranges over all decreasing labelings of the tree)

The Markov chain tree Theorem gives that ρv = det(I −M(v))/Z , so equivalently

∑
`

1`0=r

n−2∏
i=0

[←−
H {`≤i}(a(`i+1), `i )

]
det(I −M(`n−1)) = 1?
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Figure: Path seen backward as a heap of outgoing edges
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Figure: The tree edges are always on top of the piles.
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1

0

(In,Out)

(4, 4)

(2, 2)

(4, 4)

(1, 1)

(0, 1)

(2, 2)

(5, 4)

Figure: Count the incoming and outgoing edges
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1

0

(In,Out)

(3, 3)

(2, 1)

(2, 3)

(1, 0)

(0, 0)

(1, 1)

(3, 4)

Figure: Pop-out the tree edges to construct H−t (update (In,Out))
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0

(In,Out− In)

(3, 0)

(2,−1)

(2,+1)

(1,−1)

(0, 0)

(1, 0)

(3,+1)

Figure: Convenient to keep an eye on (In,Out-In)
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(In,Out− In)

(3, 0)

(2,−1)

(2,+1)

(1,−1)
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Figure: Play golf!
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(In,Out− In)

(2, 0)

(2,−1)

(1, 0)

(0, 0)

(0, 0)

(1, 0)

(3,+1)

Figure: Supress the path and update (In,Out-In)
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(In,Out− In)
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Figure: Let the pieces fall
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(In,Out− In)

(2, 0)

(2,−1)

(1, 0)
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Figure: Continue playing golf with next emitting vertex.
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Figure: Supress the path and update (In,Out-In)
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Figure: Let the pieces fall
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Figure: heap of cycles
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The heap of outgoing edges H−t is a heap only on V \ `n+1 and
H−t = Golf × HC . Recall we fix a treatment order to fix an ordering of the
starting points in the Golf game.

∑
`

1`0=r

n−2∏
i=0

[←−
H `≤i

(a(`i+1), `i )
]

det(I −M(`n−1))

=
∑

H−t valid

W (H−t) det(I −M(`n−1))

=
∑

(Golf ,HC) valid

W (Golf )×W (HC ) det(I −M(`n−1))

=
∑

Golf valid

W (Golf )︸ ︷︷ ︸
=1

×

 ∑
HC heap of cycles

not containing `n−1

W (HC )

 det(I −M(`n−1))

︸ ︷︷ ︸
=1

The first by a probabilistic algorithm.
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III.2. Consequences of the labeled extension

Corollary (F.-Marckert (’21+))
If W is a SRW stopped when m < |V | vertices has been discovered, then the tree
FirstEntrance(W ) is not uniform in SubTree(G , r ,m).

Consider τA as the hitting time of the set A and recall that for a rooted tree (t, r)
we let a(v) denote the ancestor of v towards the root.

Proposition (F.-Marckert (’21+))
For any spanning tree t of G we have

∑
`

n−2∏
i=0

Pa(`i+1)

(←−τ {`i} <←−τ {`i+1,...,`n−1}
)

= 1,

where the sum ranges over the set of decreasing labeling of (t, r).
Moreover, this is not true if t is not a spanning tree.
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Do I have more time?
No

Thanks!

Yes

Wait for it!
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IV. Markov Chain in SubTree(G , r)

Assume Xi = t is an element of SubTrees(G , r). To define Xi+1, proceed as
follows. Pick independently, a random edge ~e ∼ Uniform(~E (G )) and “a random
choice c” satisfying

P(c = +1) = p|t|, P(c = 0) = q|t|, P(c = −1) = r|t|,

if c = +1 then “try to add e”: if t ∪ {e} is a tree, set Xi+1 = t ∪ {e}. If it has
a cycle, then pick Xi+1 according to BreakCycle(t ∪ {e}, e), else Xi+1 = t.
if c = 0, do nothing, and set Xi+1 = t,
if c = −1, then “try to remove ~e”: set Xi+1 = t \ ~e if it is a tree and does not
remove the root r , else Xi+1 = t.
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II.2. Markov Chain in SubTree(G , r)

Proposition (F.-Marckert (’21))
The MC previously defined is reversible and its unique invariant measure ρr on
SubTree(G , r) gives the same weight νn to each element in SubTree(G , r , n), for
all 1 ≤ n ≤ |V |, that is ρt = ν|t|. The sequence νk : k ∈ {1, 2, . . . , |V |} satisfies:

νm = ν1

m∏
i=2

(
pi−1

ri

)
, ∀m ∈ {2, 3, . . . , |V |}

|V |∑
n=1

νn|SubTree(G , r , n)| = 1

Remark
• Tunning p, r , q one can target a size w.h.p. even concentrate in an interval.
• Conditioning on the size of the tree, we obtain the uniform distribution + simple
conditions on p, q, r .
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II.2. Subcase: the graph G is a tree.
We obtain a coupling from the past and we give explicit bounds on the coupling
time. Hypothesis M :p1 ≤ p2 ≤ · · · ≤ p|V |−1

r2 ≥ ... ≥ r|V |

(a) Initialization

(b) Intermediate phase

(c) Merged state

Luis Fredes (Université Paris-Saclay) Random subtree generation of graphs 3 / 5



II.2. Subcase: the graph G is a tree.
We obtain a coupling from the past and we give explicit bounds on the coupling
time. Hypothesis M :p1 ≤ p2 ≤ · · · ≤ p|V |−1

r2 ≥ ... ≥ r|V |

(a) Initialization

(b) Intermediate phase

(c) Merged state

Luis Fredes (Université Paris-Saclay) Random subtree generation of graphs 3 / 5



II.2. Subcase: the graph G is a tree.
We obtain a coupling from the past and we give explicit bounds on the coupling
time. Hypothesis M :p1 ≤ p2 ≤ · · · ≤ p|V |−1

r2 ≥ ... ≥ r|V |

(a) Initialization

(b) Intermediate phase

(c) Merged state

Luis Fredes (Université Paris-Saclay) Random subtree generation of graphs 3 / 5



II.2. Subcase: the graph G is a tree.
We obtain a coupling from the past and we give explicit bounds on the coupling
time. Hypothesis M :p1 ≤ p2 ≤ · · · ≤ p|V |−1

r2 ≥ ... ≥ r|V |

(a) Initialization

(b) Intermediate phase

(c) Merged state

Luis Fredes (Université Paris-Saclay) Random subtree generation of graphs 3 / 5



Other well known model stopped at the target size.

 440

 460

 480

 500

 520

 540

 560

 440  460  480  500  520  540  560

(a) FPP on the (Z/1000Z)2

with i.i.d. uniform labels on
[0, 1]. Tree size 10k.

480 500 520 540 560 580

480

500

520

540

560

580

600

(b) Kruskal’s tree of size 5k
containing on (Z/1000Z)2.

 880

 900

 920

 940

 960

 980

 1000

 1020

 1040

 900  920  940  960  980  1000  1020  1040

(c) Prim’s tree of size 5k on
(Z/2000Z)2.

20 10 0 10 20

30

20

10

0

10

20

30

(d) Tree Internal DLA with
2000 vertices.

 0

 150

 0  150

(e) DLA tree with 5k
(Z/1000Z)2.

 250

 300

 350

 400

 450

 500

 550

 600

 650

 450  500  550  600  650  700  750  800  850

(f) Size biased forest, tree
component on (Z/2000Z)2.
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THANKS!
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