Non-bijective scaling limit of maps via restrictions

Luis Fredes
(Work with J. Bettinelli, N. Curien and A. Sepúlveda)

DIM, 2019

Maps

Figure: Same graph, different embeddings on the sphere.

Planar map $=$ embedding of a planar graph on the sphere up to homeomorphism.

Maps

Figure: Same graph, different embeddings on the sphere.

Planar map $=$ embedding of a planar graph on the sphere up to homeomorphism.

Figure: Tree equivalent ways to define the classes of planar maps.

Maps

Figure: Same graph, different embeddings on the sphere.

Planar map $=$ embedding of a planar graph on the sphere up to homeomorphism.

Figure: Tree equivalent ways to define the classes of planar maps.

Maps

- A face $=$ A connected component of the complement of the edges.

Maps

- A face $=$ A connected component of the complement of the edges.

Maps

- A face $=\mathrm{A}$ connected component of the complement of the edges.
- The root-edge $=$ distinguished half edge.

Maps

- A face $=\mathrm{A}$ connected component of the complement of the edges.
- The root-edge $=$ distinguished half edge.
- The root-face= face to the left of the root-edge.

Maps

- A face $=\mathrm{A}$ connected component of the complement of the edges.
- The root-edge $=$ distinguished half edge.
- The root-face= face to the left of the root-edge.
- Degree of a face $=$ number of adjacent edges to it.

q-angulations

q-angulations: map whose faces have degree q.
Triangulations: 3-angulations. Quadrangulations: 4-angulations.

These families are in bijection with different families of labelled trees.
[Cori-Vauquelin-Schaeffer '98, Di-Francesco-Bouttier-Guitter '04].

q-angulations with a boundary

q-angulations with a boundary: All faces, but the root-face, have degree q.

Simple boundary: boundary without pinch points.

Some families of maps with a boundary are in bijection with labelled forests.
[Schaeffer '97 ; Poulalhon \& Schaeffer '06.; Bettinelli '15]

Quadrangulations with a simple boundary

Number of quadrangulations with a simple boundary with:

- f internal faces.
- simple boundary of size $2 p$ (root-face of degree $2 p$).

$$
\begin{gathered}
q_{f, p} \underset{f \rightarrow \infty}{\sim} C_{p} 12^{f} f^{-5 / 2} \\
C_{p} \underset{p \rightarrow \infty}{\sim} \frac{\sqrt{3 p}}{2 \pi}\left(\frac{9}{2}\right)^{p}
\end{gathered}
$$

Analytic [Bouttier \& Guitter '09] and bijective [Bernardi \& Fusy '17].

Gromov-Hausdorff topology

Let $\left(E, d_{E}\right)$ be a metric space and $A, B \subset E$. The Hausdorff distance is $d_{H}(A, B)=\inf \left\{\varepsilon>0: A \subset B_{\varepsilon}, B \subset A_{\varepsilon}\right\}$

Gromov-Hausdorff topology

Let $\left(E, d_{E}\right)$ be a metric space and $A, B \subset E$. The Hausdorff distance is $\mathrm{d}_{\mathrm{H}}(\mathrm{A}, \mathrm{B})=\inf \left\{\varepsilon>0: \mathrm{A} \subset \mathrm{B}_{\varepsilon}, \mathrm{B} \subset \mathrm{A}_{\varepsilon}\right\}$

Gromov-Hausdorff topology

Consider the set S of compact metric spaces up to isometry classes. The Gromov-Hausdorff distance between two metric spaces (X, d) and $\left(X^{\prime}, d^{\prime}\right)$ is defined as

$$
\mathrm{d}_{\mathrm{GH}}\left((\mathrm{X}, \mathrm{~d}),\left(\mathrm{X}^{\prime}, \mathrm{d}^{\prime}\right)\right)=\inf \mathrm{d}_{\mathrm{H}}\left(\phi(\mathrm{X}), \phi^{\prime}\left(\mathrm{X}^{\prime}\right)\right)
$$

where the infimum is taken over all metric spaces $\left(E, \mathrm{~d}_{\mathrm{E}}\right)$ and all isometric embeddings ϕ, ϕ^{\prime} from X, X^{\prime} respectively into E.

Gromov-Hausdorff topology

Consider the set S of compact metric spaces up to isometry classes. The Gromov-Hausdorff distance between two metric spaces (X, d) and $\left(X^{\prime}, d^{\prime}\right)$ is defined as

$$
\mathrm{d}_{\mathrm{GH}}\left((\mathrm{X}, \mathrm{~d}),\left(\mathrm{X}^{\prime}, \mathrm{d}^{\prime}\right)\right)=\inf \mathrm{d}_{\mathrm{H}}\left(\phi(\mathrm{X}), \phi^{\prime}\left(\mathrm{X}^{\prime}\right)\right)
$$

where the infimum is taken over all metric spaces $\left(E, \mathrm{~d}_{\mathrm{E}}\right)$ and all isometric embeddings ϕ, ϕ^{\prime} from X, X^{\prime} respectively into E.

Gromov-Hausdorff topology

Consider the set S of compact metric spaces up to isometry classes. The Gromov-Hausdorff distance between two metric spaces (X, d) and $\left(X^{\prime}, d^{\prime}\right)$ is defined as

$$
\mathrm{d}_{\mathrm{GH}}\left((\mathrm{X}, \mathrm{~d}),\left(\mathrm{X}^{\prime}, \mathrm{d}^{\prime}\right)\right)=\inf \mathrm{d}_{\mathrm{H}}\left(\phi(\mathrm{X}), \phi^{\prime}\left(\mathrm{X}^{\prime}\right)\right)
$$

where the infimum is taken over all metric spaces $\left(E, \mathrm{~d}_{\mathrm{E}}\right)$ and all isometric embeddings ϕ, ϕ^{\prime} from X, X^{\prime} respectively into E.

Gromov-Hausdorff topology

Consider the set S of compact metric spaces up to isometry classes. The Gromov-Hausdorff distance between two metric spaces (X, d) and $\left(X^{\prime}, d^{\prime}\right)$ is defined as

$$
\mathrm{d}_{\mathrm{GH}}\left((\mathrm{X}, \mathrm{~d}),\left(\mathrm{X}^{\prime}, \mathrm{d}^{\prime}\right)\right)=\inf \mathrm{d}_{\mathrm{H}}\left(\phi(\mathrm{X}), \phi^{\prime}\left(\mathrm{X}^{\prime}\right)\right)
$$

where the infimum is taken over all metric spaces $\left(E, \mathrm{~d}_{\mathrm{E}}\right)$ and all isometric embeddings ϕ, ϕ^{\prime} from X, X^{\prime} respectively into E.

Proposition

The function d_{GH} induces a metric on S. The space $\left(S, \mathrm{~d}_{\mathrm{GH}}\right)$ is separable and complete.

Uniform quadrangulations

$\mathfrak{q}_{\mathfrak{f}}=$ Unif. quadrangulation with f faces.
Theorem (Le Gall '13, Miermont '13)

$$
\left(\mathfrak{q}_{f}, \frac{d_{\text {map }}}{f^{1 / 4}}\right) \xrightarrow[G H]{(d)} \text { Brownian map }
$$

Properties

- Hausdorff dim. is 4 (Le Gall '07).
- Homeomorphic to \mathbb{S}^{2} (Le Gall \& Paulin '08).

Uniform quadrangulations

$\mathfrak{q}_{\mathfrak{f}}=$ Unif. quadrangulation with f faces.

Theorem (Le Gall '13, Miermont '13)

$$
\left(\mathfrak{q}_{f}, \frac{d_{\text {map }}}{f_{1 / 4}}\right) \xrightarrow[G H]{(d)} \text { Brownian map }
$$

Properties

- Hausdorff dim. is 4 (Le Gall '07).
- Homeomorphic to \mathbb{S}^{2} (Le Gall \& Paulin '08).

Universal: q-angulations

- $q \geq 3$ (Le Gall ' 13 , Miermont ' 13 , Addario-Berry \& Albenque '19).

Others

- $q=3,4$ simple (Addario-Berry \& Albenque '13).
- Bipartite maps with prescribed face degree sequence (Marzouk '19).

Uniform quadrangulation with a boundary: GH limit

$\mathfrak{q}_{\mathfrak{f}, \mathbf{p}}=$ Unif. quadrangulations with a boundary of size $2 p$ and f faces. For a sequence $(p(f))_{f \in \mathbb{N}}$, define $\bar{p}=\lim p(f) f^{-1 / 2}$ as $f \rightarrow \infty$.

Theorem (Scaling limit (Bettinelli '15))

$$
\left(\mathfrak{q}_{f, p(f)}, \frac{\mathrm{d}_{\text {map }}}{s(f, p(f))}\right) \xrightarrow[G H]{(d)} \begin{cases}\text { Brownian map } & \text { if } s(f, p(f))=f^{1 / 4} \text { and } \bar{p}=0 \\ \text { Brownian disk } & \text { if } s(f, p(f))=f^{1 / 4} \text { and } \bar{p} \in(0,+\infty) \\ C R T & \text { if } s(f, p(f))=2 p(f)^{1 / 2} \text { and } \bar{p}=\infty\end{cases}
$$

Uniform quadrangulation with a boundary: GH limit

$\mathfrak{q}_{\mathfrak{f}, \mathbf{p}}=$ Unif. quadrangulations with a boundary of size $2 p$ and f faces. For a sequence $(p(f))_{f \in \mathbb{N}}$, define $\bar{p}=\lim p(f) f^{-1 / 2}$ as $f \rightarrow \infty$.

Theorem (Scaling limit (Bettinelli '15))

$$
\left(\mathfrak{q}_{f, p(f)}, \frac{\mathrm{d}_{\text {map }}}{s(f, p(f))}\right) \xrightarrow[G H]{(d)} \begin{cases}\text { Brownian map } & \text { if } s(f, p(f))=f^{1 / 4} \text { and } \bar{p}=0 \\ \text { Brownian disk } & \text { if } s(f, p(f))=f^{1 / 4} \text { and } \bar{p} \in(0,+\infty) \\ C R T & \text { if } s(f, p(f))=2 p(f)^{1 / 2} \text { and } \bar{p}=\infty\end{cases}
$$

Properties (Bettinelli \& Miermont

 '15)Brownian disk properties

- The boundary is simple.
- Hausdorff dim. 4 in the interior, 2 in the boundary.
- Homeomorphic to the disk $2 d$.

Unif. quad. with 30k interior faces and boundary 173.

Universal behavior

"Same" trichotomy

- Bipartite maps with prescribed face degree sequence (Marzouk '19).

Critical case (boundary $\approx \sqrt{\text { volume }}$)

- Triangulations $(q=3)$ with simple boundary (Albenque, Hölden \& Sun '19).

Unif. quad. with 30k interior faces and boundary 173.

These results are all obtained from bijections!

Our main result is a non-bijective technique that allows us to obtain the convergence of a given model of random maps using a reference converging model of random maps.

Related example

Consider a collection of i.i.d. r.v. $\left\{X_{i}\right\}_{i \in \mathbb{N}}$ With $\mathbb{P}\left(X_{1}=1\right)=\mathbb{P}\left(X_{1}=-1\right)=1 / 2$. Denote by $S_{n}=X_{1}+X_{2}+\ldots+X_{n}$ and set $S_{0}=0$.

How to prove that in $C([0,1])$

$$
\begin{equation*}
\left(Y_{t}\right)_{t \in[0,1]}:=\left(\left.\frac{S_{N t}}{\sqrt{N}} \right\rvert\, S_{N}=0\right)_{t \in[0,1]} \xrightarrow{(d)}\left(B r_{t}^{b}\right)_{t \in[0,1]} ? \tag{Model}
\end{equation*}
$$

Related example

Consider a collection of i.i.d. r.v. $\left\{X_{i}\right\}_{i \in \mathbb{N}}$ With $\mathbb{P}\left(X_{1}=1\right)=\mathbb{P}\left(X_{1}=-1\right)=1 / 2$. Denote by $S_{n}=X_{1}+X_{2}+\ldots+X_{n}$ and set $S_{0}=0$.

How to prove that in $C([0,1])$

$$
\begin{equation*}
\left(Y_{t}\right)_{t \in[0,1]}:=\left(\left.\frac{S_{N t}}{\sqrt{N}} \right\rvert\, S_{N}=0\right)_{t \in[0,1]} \xrightarrow{(d)}\left(B r_{t}^{b}\right)_{t \in[0,1]} ? \tag{Model}
\end{equation*}
$$

Suppose given that for $\varepsilon \rightarrow 0$ as $N \rightarrow \infty$

$$
\left(\bar{Y}_{t}\right)_{t \in[0,1]}:=\left(\left.\frac{S_{N t}}{\sqrt{N}} \right\rvert\, S_{n} \in[-\varepsilon \sqrt{N}, \varepsilon \sqrt{N}]\right)_{t \in[0,1]} \xrightarrow{(d)}\left(\operatorname{Br}_{t}^{b}\right)_{t \in[0,1]}
$$

(Reference)
We will compare this two processes.

Figure: In green the reference $\left(\bar{Y}_{t}\right)$ and in blue the model $\left(Y_{t}\right)$ (bridge).

Figure: In green the reference $\left(\bar{Y}_{t}\right)$ and in blue the model $\left(Y_{t}\right)$ (bridge), before scaling.

Random maps setting

Consider

- Model: $\left(\mathbb{P}_{n}: n \in \mathbb{N}\right)$ supported in the set of maps.
- Reference: $\left(\overline{\mathbb{P}}_{n}: n \in \mathbb{N}\right)$ supported in the set of maps.

And two sets of restrictions

- $\left\{R_{n}^{1, \varepsilon}: n \in \mathbb{N}, \varepsilon>0\right\}$.
- $\left\{R_{n}^{2, \varepsilon}: n \in \mathbb{N}, \varepsilon>0\right\}$.

Define the following conditions
C1) Convergent reference $\overline{\mathbb{P}}_{n} \rightarrow \overline{\mathbb{P}}$ in the GH topology.
C2) The Radon-Nikodym derivative between the restrictions in the reference and in the model is $1+o(\varepsilon)$.
C3) The complement of both restrictions are disjoint and "small" with probability $1-o(\varepsilon)$.

Define the following conditions
C1) Convergent reference $\overline{\mathbb{P}}_{n} \rightarrow \overline{\mathbb{P}}$ in the GH topology.
C2) The Radon-Nikodym derivative between the restrictions in the reference and in the model is $1+o(\varepsilon)$.
C3) The complement of both restrictions are disjoint and "small" with probability $1-o(\varepsilon)$.

Theorem (Bettinelli, Curien, F., Sepúlveda '19+)

If (C1- C3) are satisfied, then

$$
\mathbb{P}_{n} \rightarrow \overline{\mathbb{P}} \quad \text { as } n \rightarrow \infty
$$

in the Gromov-Hausdorff topology

Idea of the proof

Figure: Two restrictions

- Tightness: (C1) \& (C2) establish tightness of each restriction, which is enough to obtain the complete tightness as soon as the union of both restrictions covers the whole map (C3).
- Fin. dim. dist: One restriction suffices as soon as the complement of restrictions are small (C3).
- Limit: The same limit as the reference (C1)

Application: GH limit of simple boundary quad.

$\mathfrak{q f}_{\mathrm{f}, \mathrm{p}}{ }^{S}=$ Unif. quadrangulations with simple boundary $2 p$ and f faces.
For a sequence $(p(f))_{f \in \mathbb{N}}$, define $\bar{p}=\lim p(f) f^{-1 / 2}$ as $f \rightarrow \infty$.

Theorem (Bettinelli, Curien, F., Sepúlveda '19+)

If $\bar{p} \in(0,+\infty)$

$$
\left(\mathfrak{q}_{f, p(f)}{ }^{s}, \frac{d_{\text {map }}}{f^{1 / 4}}\right) \xrightarrow[G H]{(d)} \text { Brown. disk }
$$

Unif. quad. with 30k interior faces and boundary 173.

Recall that a.s. the boundary of the Brownian disk is simple.

Recall that a.s. the boundary of the Brownian disk is simple.
We will extract from a quad. with general boundary \mathfrak{m} a simple boundary quadrangulation $\mathfrak{s m}$ called the core (Core(m)).

Figure: Quad. with general boundary.

Figure: Core decomposition.

Since the core is a pruning of a general boundary quadrangulation, it has random volume and random boundary size. It concentrates

Proposition (Gwynne \& Miller '16))

The core obtained from $\mathfrak{q}_{n, q_{n}}$ satisfies the following.

- Conditionally on its perimeter p_{n} and its area a_{n}, it is a uniform quad. with simple boundary.

$$
a_{n} / n \rightarrow 1 \quad \text { and } p_{n} / q_{n} \rightarrow 1 / 3
$$

In law when $\bar{p} \in(0, \infty)$
To apply our theorem we use

- Model: Uniform random quad. with a simple boundary (n faces, p_{n} boundary).
- Reference: Core of a uniform quad. with general boundary (n faces, $3 p_{n}$ boundary).

The core is a reference satisfying (C1)
Theorem (Gwynne \& Miller '16)
If $\bar{p} \in(0,+\infty)$

$$
\left(\operatorname{Core}\left(\mathfrak{q}_{n, 3 p_{n}}\right), \frac{d_{\text {map }}}{n^{1 / 4}}\right) \xrightarrow[G H]{(d)} \text { Brown. disk }
$$

Restrictions

Figure: Ball growing hitting time.

Figure: Restriction.

We do the same procedure both in the Model and the Reference.

Radon-Nikodym

Recall that
$q_{n, p} \underset{n \rightarrow \infty}{\sim} C_{p} 12^{n} n^{-5 / 2}$

In both the model and the reference the probability to see a restriction \mathfrak{s}_{0} with area a

$$
\begin{aligned}
\mathbb{P}\left(R_{n}^{i, \varepsilon}\left(S_{n, p}\right)=\mathfrak{s}_{0}\right) & =\frac{\# \text { Ways to complete the hole } \mathfrak{s}_{1}}{q_{n, p}} \\
& =\frac{q_{n-a, \ell_{1}+\ell_{2}}}{q_{n, p}}
\end{aligned}
$$

Using the countings, in the same fashion as for walks, we obtain that the Radon-Nikodym derivative for each restriction satisfies

$$
\frac{d \overline{\mathbb{P}}_{N}^{i, \varepsilon}}{d \mathbb{P}_{N}^{i, \varepsilon}}\left(\mathfrak{s}_{0}\right)=1+o(\varepsilon)
$$

So condition C2) is satisfied.
It remains to check condition C3).

- The complement of the restrictions are disjoint w.h.p. for the chosen points:

In the continuum when $\varepsilon \rightarrow 0$, the complement of restrictions shrink to a point.

- The complement of the two restrictions are small w.h.p.:

In the critical case, the zones that remain after taking the limit are zones where the boundary are of order $\sqrt{\text { volume }}$, because of this and the continuity of the intersection points, the complement of restrictions are "small".

With a reference, counting results and a kind of "Markovian" property, one can obtain scaling limits.
Other possible results by applying this theorem:

- Other simple boundary objects as bipartite maps with prescribed face degree sequence.
- Simple maps (without loops or multiple edges) by extracting the 2-connected core.
- Maps with more than one simple hole, by treating one by one each hole.
- The precedents in higher genus.

