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Maps

= 6=

Figure: Same graph, different embeddings on the sphere.

Planar map = embedding of a planar graph on the sphere up to homeomorphism.

= =

Figure: Tree equivalent ways to define the classes of planar maps.
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Maps

A face= A connected component of
the complement of the edges.

The root-edge= distinguished half
edge.

The root-face= face to the left of
the root-edge.

Degree of a face= number of
adjacent edges to it.

degf = 6

degf = 4

degf = 4
root-face

root-edge

vertices
edge
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q-angulations

q-angulations: map whose faces have
degree q.
Triangulations: 3-angulations.
Quadrangulations: 4-angulations.

These families are in bijection with
different families of labelled trees.

[Cori-Vauquelin-Schaeffer ’98,
Di-Francesco-Bouttier-Guitter ’04].
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q-angulations with a boundary

q-angulations with a boundary: All
faces, but the root-face, have degree q.

Simple boundary: boundary without
pinch points.

Some families of maps with a boundary
are in bijection with labelled forests.

[Schaeffer ’97 ; Poulalhon & Schaeffer ’06.;
Bettinelli ’15]
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Quadrangulations with a simple boundary

Number of quadrangulations with a
simple boundary with:

f internal faces.
simple boundary of size 2p
(root-face of degree 2p).

qf ,p ∼
f→∞

Cp12f f −5/2

Cp ∼
p→∞

√
3p
2π

(
9
2

)p

Analytic [Bouttier & Guitter ’09] and bijective [
Bernardi & Fusy ’17 ].
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Gromov-Hausdorff topology

Let (E , dE ) be a metric space and
A,B ⊂ E . The Hausdorff distance is

dH(A,B) = inf
{
ε > 0 : A ⊂ Bε,B ⊂ Aε

}
(E, dE)

A B

Consider the set S of compact metric spaces up to isometry classes. The
Gromov-Hausdorff distance between two metric spaces (X , d) and (X ′, d ′) is
defined as

dGH((X, d), (X′, d′)) = inf dH(φ(X), φ′(X′))

where the infimum is taken over all metric spaces (E , dE) and all isometric
embeddings φ, φ′ from X , X ′ respectively into E .

Proposition
The function dGH induces a metric on S . The space (S , dGH) is separable and
complete.
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Uniform quadrangulations
qf= Unif. quadrangulation with f faces.

Theorem (Le Gall ’13, Miermont
’13)(

qf ,
dmap

f 1/4

)
(d)−−−−→
GH

Brownian map

Properties
Hausdorff dim. is 4 (Le Gall ’07).
Homeomorphic to S2 (Le Gall &
Paulin ’08).

Universal: q-angulations
q ≥ 3 (Le Gall ’13, Miermont ’13,
Addario-Berry & Albenque ’19).

Others
q = 3, 4 simple (Addario-Berry &
Albenque ’13).
Bipartite maps with prescribed face
degree sequence (Marzouk ’19).

Unif. quadrangulation 30k faces.
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Uniform quadrangulation with a boundary: GH limit

qf,p= Unif. quadrangulations with a boundary of size 2p and f faces. For a
sequence (p(f ))f∈N, define p = lim p(f )f −1/2 as f →∞.

Theorem (Scaling limit (Bettinelli ’15))

(
qf ,p(f ),

dmap

s(f , p(f ))

)
(d)−−−→
GH


Brownian map if s(f , p(f )) = f 1/4 and p = 0
Brownian disk if s(f , p(f )) = f 1/4 and p ∈ (0,+∞)

CRT if s(f , p(f )) = 2p(f )1/2 and p =∞

Properties (Bettinelli & Miermont
’15)
Brownian disk properties

The boundary is simple.
Hausdorff dim. 4 in the interior, 2
in the boundary.
Homeomorphic to the disk 2d .

Unif. quad. with 30k interior faces and boundary 173.
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Universal behavior

“Same” trichotomy
Bipartite maps with prescribed face degree sequence (Marzouk ’19).

Critical case (boundary ≈
√
volume)

Triangulations (q = 3) with simple boundary (Albenque, Hölden & Sun ’19).

Unif. quad. with 30k interior faces and boundary 173.
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These results are all obtained from bijections!

Our main result is a non-bijective technique that allows
us to obtain the convergence of a given model of random
maps using a reference converging model of random

maps.
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Related example

Consider a collection of i.i.d. r.v. {Xi}i∈N With P(X1 = 1) = P(X1 = −1) = 1/2.
Denote by Sn = X1 + X2 + ...+ Xn and set S0 = 0.

How to prove that in C ([0, 1])

(Yt)t∈[0,1] :=

(
SNt√
N

∣∣∣SN = 0
)

t∈[0,1]

(d)−−−−−→
(
Brbt
)
t∈[0,1]? (Model)

Suppose given that for ε→ 0 as N →∞

(Y t)t∈[0,1] :=

(
SNt√
N

∣∣∣Sn ∈ [−ε
√
N, ε
√
N]

)
t∈[0,1]

(d)−−−−−→
(
Brbt
)
t∈[0,1]

(Reference)

We will compare this two processes.
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ε

−ε

t = 0 t = 1

t = 1− ε

Figure: In green the reference (Y t) and in blue the model (Yt) (bridge).
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ε
√
N

−ε
√
N

t = 0 t = 2N

t = 2N(1− ε)

Figure: In green the reference (Y t) and in blue the model (Yt) (bridge), before scaling.
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Random maps setting

Consider
Model: (Pn : n ∈ N) supported in the set of maps.
Reference: (Pn : n ∈ N) supported in the set of maps.

And two sets of restrictions
{R1,ε

n : n ∈ N, ε > 0}.
{R2,ε

n : n ∈ N, ε > 0}.
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Define the following conditions
C1) Convergent reference Pn → P in the GH topology.
C2) The Radon-Nikodym derivative between the restrictions in the reference and

in the model is 1 + o(ε).
C3) The complement of both restrictions are disjoint and “small” with probability

1− o(ε).

Theorem (Bettinelli, Curien, F., Sepúlveda ’19+)
If (C1- C3) are satisfied, then

Pn → P as n→∞

in the Gromov-Hausdorff topology
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Idea of the proof

R1,ε
n (m) R2,ε

n (m)

Figure: Two restrictions

Tightness: (C1) & (C2) establish tightness of each restriction, which is
enough to obtain the complete tightness as soon as the union of both
restrictions covers the whole map (C3).
Fin. dim. dist: One restriction suffices as soon as the complement of
restrictions are small (C3).
Limit: The same limit as the reference (C1)
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Application: GH limit of simple boundary quad.
qf,p

S= Unif. quadrangulations with simple boundary 2p and f faces.
For a sequence (p(f ))f∈N, define p̄ = lim p(f )f −1/2 as f →∞.

Theorem (Bettinelli, Curien, F., Sepúlveda ’19+)
If p̄ ∈ (0,+∞) (

qf ,p(f )
S ,

dmap

f 1/4

)
(d)−−−−→
GH

Brown. disk

Unif. quad. with 30k interior faces and boundary 173.
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Proof idea

Recall that a.s. the boundary of the Brownian disk is simple.

We will extract from a quad. with general boundary m a simple boundary
quadrangulation sm called the core (Core(m)).

m

Figure: Quad. with general boundary.

sm

m0

m1

m2

m3

m4

m5

m6

Figure: Core decomposition.
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Since the core is a pruning of a general boundary quadrangulation, it has random
volume and random boundary size. It concentrates

Proposition (Gwynne & Miller ’16))
The core obtained from qn,qn satisfies the following.

Conditionally on its perimeter pn and its area an, it is a uniform quad. with
simple boundary.

an/n→ 1 and pn/qn → 1/3

In law when p̄ ∈ (0,∞)

To apply our theorem we use
Model: Uniform random quad. with a simple boundary (n faces, pn
boundary).
Reference: Core of a uniform quad. with general boundary (n faces, 3pn
boundary).
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The core is a reference satisfying (C1)

Theorem (Gwynne & Miller ’16)
If p̄ ∈ (0,+∞) (

Core(qn,3pn),
dmap

n1/4

)
(d)−−−−→
GH

Brown. disk
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Restrictions

x1L

x1R

x1

v

r̄

r
x2

Figure: Ball growing hitting time.

x1L

x1R

x1

v

R1,ε
n (s)

Figure: Restriction.

We do the same procedure both in the Model and the Reference.
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Radon-Nikodym
Recall that

qn,p ∼
n→∞

Cp12nn−5/2

x1L

x1R
s0s1

`12

`2
`11

In both the model and the reference the probability to see a restriction s0 with
area a

P(R i,ε
n (Sn,p) = s0) =

#Ways to complete the hole s1
qn,p

=
qn−a,`1+`2

qn,p
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Using the countings, in the same fashion as for walks, we obtain that the
Radon-Nikodym derivative for each restriction satisfies

dPi,ε

N

dPi,ε
N

(s0) = 1 + o(ε).

So condition C2) is satisfied.

It remains to check condition C3).
• The complement of the restrictions are disjoint w.h.p. for the chosen points:

In the continuum when ε→ 0, the complement of restrictions shrink to a
point.
• The complement of the two restrictions are small w.h.p.:

In the critical case, the zones that remain after taking the limit are zones
where the boundary are of order

√
volume, because of this and the continuity of

the intersection points, the complement of restrictions are “small”.
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Final comments

With a reference, counting results and a kind of “Markovian” property, one can
obtain scaling limits.
Other possible results by applying this theorem:

Other simple boundary objects as bipartite maps with prescribed face degree
sequence.
Simple maps (without loops or multiple edges ) by extracting the
2-connected core.
Maps with more than one simple hole, by treating one by one each hole.
The precedents in higher genus.
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