
A new proof of Aldous-Broder theorem

Luis Fredes
(Work with J.F. Marckert)

ERC GeoBrown
Seminario de probabilidades Chile, April 2021

Luis Fredes (Université Paris-Saclay) A new proof of Aldous-Broder theorem 1 / 29



Definition (Spanning tree)
Given a graph G , we say that T is a spanning tree of G if it is a subgraph of G
that is a tree containing all the vertices of G .
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In this talk

I) Combinatorics on (weighted) spanning trees.
II) Given a graph G , how to sample a uniform spanning tree (UST)?
III) The original proof of Aldous-Broder theorem.
IV) New combinatorial proof of Aldous-Broder theorem.

Luis Fredes (Université Paris-Saclay) A new proof of Aldous-Broder theorem 3 / 29



I. Combinatorics: Counting (weighted) spanning trees
ST(G )= set of spanning trees of G .

Matrix-tree theorem [Kirchhoff]

|ST(G )| = det
(
Laplacian(r)G

)
,

where Laplacian(r)G is the Laplacian matrix of G deprived of the line and column
associated to r .

LaplacianG (i , j) =
[
deg(ui )1i=j − |{ui , uj} ∈ E |

]

A B

C

D

E
F

LaplacianG =


3 −1 0 −1 0 −1
−1 5 −2 −1 −1 0
0 −2 3 0 −1 0
−1 −1 0 3 −1 0
0 −1 −1 −1 4 −1
−1 0 0 0 −1 2



|ST(G )| = det
(
Laplacian(A)G

)
= 98.
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ST(G , r):= set of spanning trees of G rooted at r .
M := Markov kernel on G such that {u, v} ∈ E =⇒ Mu,v > 0 and Mv ,u > 0.

a

b

c

Ma,b
Mb,a

Ma,c

Mc,a

W (T , r) :=
∏

~e∈T M~e with edges pointing towards the root r .

Weighted Matrix-tree theorem [Kirchhoff]∑
T∈ST(G ,r)

W (T , r) = det
(
(I −M)(r)

)
,

where (I −M)(r) is the matrix (I −M) deprived of the line and column r .
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Determinant expansion consequence

det
(
(I −M)(r)

)
=
∑
C∈C

(−1)N(C)
∏

c cycles of C

∏
~e∈c

M~e ,

where the sum ranges over
C = set of collection of disjoint oriented cycles of length ≥ 1 avoiding r .

Define
←−
M x,y := ρyMy ,x/ρx , where ρ is the invariant measure associated to M.

r a

b

d

g
p

h

Weight = (−1)2(Ma,bMb,a)(Md,gMg ,hMh,pMp,d)
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r a

b

d

g
p

h
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Heaps of pieces

Informally: some “elements” that are stacked.

General Heap Trivial Heap

a
b

c
d e

a e

General heap: (left) Equivalence class of words describing the history of the stack
= baeddecb = baeddceb = ebaddbce = ....
Trivial heap: (right) All the pieces on the ground ae = ea

Formally: a set of letters P is given and a binary relation R:
– xR/y means that x commutes with y (that is xy = yx),
– xRy means that x does not commute with y .

Heap of dominos: P = {a, b, c , d , e} aRb, bRc , cRd , dRe.

Heaps: Equivalence classes of words
w ∼ w ′ if they are equal up to a finite number of allowed commutations of
consecutive letters.
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Heap of pieces

1
2

3 4

Heap of squares

1

2

Squares sharing a side do no commuteFigure: Heaps of squares. They do not commute if
they share a side.

r a

b

d

g
p

h

r a

b

d

g
p

h

Heap of cycles :
level 1

level 0

level 0

Cycles sharing a vertex do not commute

Figure: Heaps of cycles. They do not conmute if
they share a vertex.

6

5

4

3

2

1

0

Figure: Heaps of outgoing edges. They do not
commute if they start at the same point.

General Heap Trivial Heap

a
b

c
d e

a e

Figure: Heaps of dominoes. They do not commute
if they share one extremity.
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Heap of pieces

For a heap H

Weight(H) =
∏
e∈H

w(e)

where w : P → R (or any formal commutative set)

Inversion lemma∑
H∈Heaps

Weight(H) =
1∑

H∈TrivialHeaps(−1)|H|Weight(H)

General Heap Trivial Heap

a
b

c
d e

a e

Example : Weight x for each piece, Weight(H) = x |H|,∑
H∈Heaps

Weight(H) =
1

1− 5x + 6x2 − x3
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In particular for the heaps of cycles with weights given by M one has that∑
HC∈Heaps of cycles avoiding r

W (HC )

=
1∑

HC∈Trivial heaps of cycles avoiding r (−1)|HC |W (HC )

= det
(
(I −M)(r)

)−1
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Summary of determinant formulas
1 Matrix tree theorem (MTT):∑

T∈ST(G ,r)

∏
~e∈T

M~e = det
(
(I −M)(r)

)
,

2 Cycles expansion:

det
(
(I −M)(r)

)
=

∑
HC∈Trivial heaps of cycles avoiding r

(−1)|H|
∏
~e∈H

M~e ,

3 Claim:
det
(
(I −M)(r)

)
= det

(
(I −

←−
M)(r)

)
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Consequences

1 Heaps of cycles:∑
HC∈Heaps of cycles avoiding r

W (HC )
(Inv. Lem.)

= det
(
(I −M)(r)

)−1

2 Markov chain tree theorem: the invariant measure of M satisfies

ρv
(Alg)
=

det((I −M)(v))

Z

(MTT)
=

∑
T∈ST(G ,v)

∏
~e∈T M~e

Z

Important

Z × ρv ×

 ∑
HC∈Heaps of cycles avoinding v

W (HC )

 = 1
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II. UST sampling

Consider a given graph G .
Algorithms to sample a UST:

1 Aldous-Broder algorithm.
2 Wilson algorithm.
3 Tutte polynomial + Matrix tree theorem.
4 ...
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II. UST sampling: Aldous-Broder

Consider an M-walk W in the invariant regime started at r ∈ V up to the cover
time.
Denote by FirstEntrance(W ) = (T , r), where r is the starting point of W and T
is the spanning tree formed by the first edge used to visit each vertex.
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Reversible: ρuMu,v = ρvMv ,u

Theorem (Aldous-Broder (’89))
For M positive and reversible Markov kernel with invariant distribution ρ. For
any T ∈ ST(G ) one has

P (FirstEntrance(W ) = (T , r)) =

∏
~e∈T M~e∑

w∈V det(I −M(w))
,

Reversible Kernel:
←−
M x,y = ρy/ρxMy ,x

Theorem (

Hu-Lyons-Tang (20),

F.- Marckert (’21+))
For M positive with invariant distribution ρ. For any T ∈ ST(G ) one has

P (FirstEntrance(W ) = (T , r)) =

∏
~e∈T
←−
M~e∑

w∈V det(I −
←−
M (w))

,
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From the claim we have that

det
(
I −M(v)

)
= det

(
I −
←−
M (v)

)
∀v ∈ V .

In particular, both normalization constants are the same.

Numerators are different when ρ is not reversible with respect to M .
The edges are directed from each node u toward its direct ancestor a(u). For a
tree T ∈ ST(G ) and r ∈ V∏

~e∈T

M~e =
∏

u∈T\{r}

Mu,a(u) = Const. ρr
∏

u∈T\{r}

ρuMu,a(u)

∏
~e∈T

←−
M~e =

∏
u∈T\{r}

[
Ma(u),u ρa(u)/ρu

]
= Const. ρr

∏
u∈T\{r}

ρa(u)Ma(u),u.
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III. The Aldous-Broder proof: purely probabilistic!

W = M-walk in the invariant regime up to the cover time.

Denote by LastExit(W ) = (T , r), where r is the ending point of W and T is the
spanning tree formed by the last edge used to exit each vertex.

Fact
For w a deterministic walk up to the time bigger than the cover time one has

FirstEntrance(w) = LastExit(←−w )
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III. The Aldous-Broder proof: purely probabilistic!
Consider the following rooted tree valued Markov chain Xi = (T , r). To define
Xi+1 do as follows

Figure: Xi = (T , r)
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III. The Aldous-Broder proof: purely probabilistic!
Consider the following rooted tree valued Markov chain Xi = (T , r). To define
Xi+1 do as follows

Figure: Orient the edges towards r
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III. The Aldous-Broder proof: purely probabilistic!
Consider the following rooted tree valued Markov chain Xi = (T , r). To define
Xi+1 do as follows

Figure: Make a step from the root following the kernel M.
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III. The Aldous-Broder proof: purely probabilistic!
Consider the following rooted tree valued Markov chain Xi = (T , r). To define
Xi+1 do as follows

Figure: Suppress the outgoing edge in the destination point
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III. The Aldous-Broder proof: purely probabilistic!
Consider the following rooted tree valued Markov chain Xi = (T , r). To define
Xi+1 do as follows

Figure: Change the root to the destination point
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III. The Aldous-Broder proof: purely probabilistic!
Consider the following rooted tree valued Markov chain Xi = (T , r). To define
Xi+1 do as follows

Figure: Define this resulting rooted tree as Xi+1
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This rooted tree valued Markov chain has invariant measure

ν(T , r) =

∏
~e∈T
←−
M~e∑

w∈V det(I −
←−
M (w))

Aldous-Broder original proof: A coupling from the past idea

Run a
←−
M -walk from −∞, then use the tree valued Markov chain (LastExit) and

reversibility to identify the distribution of the tree (FirstEntrance) at time 0.

This proof is elegant and intricate. Nevertheless, no intuition of what is
happening behind is left to work with.
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IV. New proof

Labelled extension
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IV. New proof

Denote by Pionner(W ) = (FirstEntrance(W ), L) where L is the labeling.
HD(a, b) = probability starting from a that a walk following M escapes D at b.
←−
H D(a, b) = probability starting from a that a walk following

←−
M escapes D at b.

P(Pionner(W ) = ((t, r), `))

= 1`0=rρ`0

n−2∏
i=0

[
H{`≤i}(`i , a(`i+1))Ma(`i+1),`i+1

]
=

(
1`0=rρ`n−1

n−2∏
i=0

[←−
H {`≤i}(a(`i+1), `i )

]
Z

) ∏
~e∈t
←−
M~e

Z
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IV. New proof

Can we prove using combinatorics that

∑
`

1`0=rZρ`n−1

n−2∏
i=0

[←−
H {`≤i}(a(`i+1), `i )

]
= 1?

(the sum ranges over all decreasing labellings of the tree)
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IV. New proof

6

5

4

3

2

1

0

Figure: Path seen backward as a heap of outgoing edges
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IV. New proof

6

5

4

3

2

1

0

Figure: The tree edges are always on top of the piles.
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IV. New proof

6

5

4

3

2

1

0

(In,Out)

(4, 4)

(2, 2)

(4, 4)

(1, 1)

(0, 1)

(2, 2)

(5, 4)

Figure: Count the incoming and outgoing edges

Luis Fredes (Université Paris-Saclay) A new proof of Aldous-Broder theorem 23 / 29



IV. New proof

6

5

4

3

2

1

0

(In,Out)

(3, 3)

(2, 1)

(2, 3)

(1, 0)

(0, 0)

(1, 1)

(3, 4)

Figure: Pop-out the tree edges to construct H−t (update (In,Out))
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IV. New proof

6

5

4

3

2

1

0

(In,Out− In)

(3, 0)

(2,−1)

(2,+1)

(1,−1)

(0, 0)

(1, 0)

(3,+1)

Figure: Convenient to keep an eye on (In,Out-In)
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IV. New proof

6

5

4

3

2

1

0

(In,Out− In)

(3, 0)

(2,−1)

(2,+1)

(1,−1)

(0, 0)

(1, 0)

(3,+1)

Figure: Play golf!
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IV. New proof

6
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1

0

(In,Out− In)

(2, 0)

(2,−1)

(1, 0)

(0, 0)

(0, 0)

(1, 0)

(3,+1)

Figure: Supress the path and update (In,Out-In)
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Figure: Let the pieces fall
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IV. New proof

6

5

4

3

2

1

0

(In,Out− In)
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(2,−1)

(1, 0)
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(3,+1)

Figure: Continue playing golf with next emitting vertex.
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IV. New proof
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IV. New proof
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Figure: heap of cycles
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IV. New proof

The heap of outgoing edges H−t is a heap only on V \ `n−1 and
H−t = Golf × HC . Recall we fix a treatment order to fix an ordering of the
starting points in the Golf game.

∑
`

1`0=rZρ`n−1 ×
n−2∏
i=0

[←−
H `≤i

(a(`i+1), `i )
]

=
∑

H−t valid

Zρ`n−1 ×W (H−t)

=
∑

(Golf ,HC) valid

Zρ`n−1 ×W (Golf )×W (HC )

=
∑

Golf valid

W (Golf )︸ ︷︷ ︸
=1

×Zρ`n−1 ×

 ∑
HC∈ heaps of cycles

avoiding `n−1

W (HC )


︸ ︷︷ ︸

Important
= 1

The first by a probabilistic algorithm.
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 ∑
HC∈ heaps of cycles

avoiding `n−1

W (HC )


︸ ︷︷ ︸

Important
= 1

The first by a probabilistic algorithm.
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IV. New proof
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starting points in the Golf game.

∑
`

1`0=rZρ`n−1 ×
n−2∏
i=0

[←−
H `≤i

(a(`i+1), `i )
]

=
∑

H−t valid

Zρ`n−1 ×W (H−t)

=
∑

(Golf ,HC) valid

Zρ`n−1 ×W (Golf )×W (HC )

=
∑

Golf valid

W (Golf )︸ ︷︷ ︸
=1

×Zρ`n−1 ×

 ∑
HC∈ heaps of cycles

avoiding `n−1

W (HC )


︸ ︷︷ ︸

Important
= 1

The first by a probabilistic algorithm.

Luis Fredes (Université Paris-Saclay) A new proof of Aldous-Broder theorem 24 / 29



IV. Consequences

Corollary (F.-Marckert (’21+))
If W is a SRW stopped when m < |V | vertices has been discovered, then the tree
FirstEntrance(W ) is not uniform in the set of subtrees of G of size m.

Consider τA as the hitting time of the set A. Define for a rooted tree (T , r), the
ancestor of v towards the root as a(v).

Proposition (F.-Marckert (’21+))
For any spanning tree T of G we have

∑
`

n−2∏
i=0

Pa(`i+1)

(←−τ {`i} <←−τ {`i+1,...,`n−1}
)
= 1,

where the sum ranges over the set of decreasing labelling of (T , r).
Moreover, this is not true if T is not a spanning tree.
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Motivation: Odded Schramm question

Figure: Schramm ICM 2006.

Figure: Subtree of size 20
containing the origin on Z2.
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(a) tree-decorated quad. 10 faces, tree of size 6.

(b) Unif. tree-decorated quad. 90k faces and tree
of size 500.
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We try to contribute to Schramm’s question in different ways:
Trying to generalize known algorithms to a target size.
Sampling (approx.) from the uniform measure in the set of subtrees of given
size.
Estimate scaling exponents.
A new combinatorial proof of the Aldous-Broder theorem.
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Do I have more time?
No

Thanks!

Yes

Wait for it!
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V. Wilson (LERW version)

Figure: Pick any vertex r as root (square vertex)

Luis Fredes (Université Paris-Saclay) A new proof of Aldous-Broder theorem 1 / 4



V. Wilson (LERW version)

Figure: Pick another vertex v ∈ V \ {r}.
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V. Wilson (LERW version)

Figure: Start a loop erased random walk (LERW) from v until it hits r .
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V. Wilson (LERW version)

Figure
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V. Wilson (LERW version)

Figure
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V. Wilson (LERW version)

Figure: Set this path as the current tree T
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V. Wilson (LERW version)

Figure: Pick another vertex v ∈ V \ V (T ).
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V. Wilson (LERW version)

Figure: Start a LERW from v until it hits T .
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V. Wilson (LERW version)

Figure: LERW: A cycle is created → throw it away and continue.
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V. Wilson (LERW version)

Figure
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V. Wilson (LERW version)

Figure
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V. Wilson (LERW version)

Figure: you got it!
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V. Wilson (LERW version)

Figure
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V. Wilson (LERW version)

Figure
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Figure

Luis Fredes (Université Paris-Saclay) A new proof of Aldous-Broder theorem 1 / 4



V. Wilson (LERW version)

Figure
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V. Wilson (LERW version)

Figure
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V. Wilson (LERW version)

Figure
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V. Wilson (LERW version)

Figure: Final tree T .
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V. Wilson (LERW version)

Figure: Heaps of cycles and a tree : HC × T .

Call (HC, T ) the r.v. associated to the heap of cycles and rooted tree of the
previous algorithm.

Theorem (Wilson (’96))
For any finite graph the algorithm ends with probability 1. Moreover, for any heap
of cycles HC and any tree T ∈ ST(G , r) one has

P ((HC, T ) = (HC ,T )) = W (HC )×W (T ),
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Important: Expected running time.
Wilson: mean hitting time.
Aldous-Broder: expected cover time (always greater than or equal to the
mean hitting time).

Both Wilson and Aldous-Broder algorithms use random walks to construct trees.

Natural question: Can Wilson be coupled with the same random walk used by
Aldous-Broder?
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VI.A combinatorial method to sample a UST

From enumeration to uniform sampling
– fix an edge e of G .

P(e ∈ UST(G )) =
|ST(G .e)|
|ST(G )|

=
Determ...
Determ...

→ add e to the spanning tree with this probability
(and contract the edge e in G ),
→ otherwise, delete e from G .

Drawback: Not fast, |ST(G )| is huge, and the pro-
gram has to deal with huge numbers.

No, sample here

Yes, sample here

? In the UST ?
A

A

A

B

B

B

C

C

C

D

D

D

E

E

E

F

F

F
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THANKS!
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