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Figure: Gypsy moth.
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Figure: Egg masses.
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Figure: Egg masses.
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Figure: Configuration at time t. Moth living period.
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Figure: Growth stage configuration time t. Random offspring of mean β.
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Figure: Growth stage configuration time t. Random placement of eggs, uniformly in VN

for each egg.
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Figure: Growth stage configuration time t. Moth die and assignation of sites is done.
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Figure: Growth stage configuration time t. If there is more than one, only one survives
(not enough room).
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Figure: Epidemic stage configuration time t + 1/2. Epidemic attacks with probability αN

each site, independently.
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Figure: Epidemic stage configuration time t + 1/2. Spreading of epidemic.
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Figure: Epidemic stage configuration time t + 1/2. Spreading of epidemic.
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Figure: Epidemic stage configuration time t + 1/2. Survivors.
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Figure: Configuration time t + 1. Moth living period.
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Multi-type moth model
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Figure: Configuration at time t. Moth living period.
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Figure: Growth stage configuration time t. Random offspring of mean βi .
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Figure: Growth stage configuration time t. Random placement of eggs, uniformly in VN

for each egg.
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Figure: Growth stage configuration time t. Random placement of eggs, uniformly in VN

for each egg.
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Figure: Epidemic stage configuration time t + 1/2. The type is assigned uniformly
among all eggs that arrived to each vertex.
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Figure: Epidemic stage configuration time t + 1/2. Epidemics attack with probability
αN(i) each site of type i , independently.
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Figure: Epidemic stage configuration time t + 1/2. Spreading of epidemic.
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Figure: Epidemic stage configuration time t + 1/2. Survivors.
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Figure: Configuration time t + 1. Moth living period.
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ηt+1 = (ηt+1(v1), . . . , ηt+1(v10))

v1

v2

v4
v3 v8 v10

v7

v5

v6 v9

= (0, 0, 0, 0, 0, 0, 0, 1, 0, 2)

Figure: Configuration time t + 1. Moth living period.
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ρt+1 = (ρt+1(1), ρt+1(2))

v1

v2

v4
v3 v8 v10

v7

v5

v6 v9

= (1, 1)/10

Figure: Configuration time t + 1. Moth living period.
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If we just consider the growth stage, it is relatively simple to proof that the fittest
species (i.e. Biggest βi) will always dominate.

Spoiler alert!
Forest fires epidemics change this behavior.
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Multi-type moth model

Consider a graph GN = (VN ,EN) with N vertices and m ∈ N∗.
The MMM is a discrete time Markov process

(
ηk
)
k≥0 is defined using an initial

configuration η0 ∈ {0, 1, . . . ,m}VN and 2 families of parameters:
1

~β = (β1, β2, . . . , βm) ∈ Rm
+

2

~αN = (αN(1), αN(2), . . . , αN(m)) ∈ [0, 1]m.
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The dynamics of the process at each time step is divided into
two consecutive stages:

Growth:
Each individual dies.
Before they die, they generate an offspring with mean βi > 0 (indep).
Each egg is sent to a random uniformly site in VN (indep).
The type is uniform among the eggs a site received; if none, the type is 0
(indep).

Epidemic:
Attack (indep) with probability αN(i).
It spreads to the connected component of the same type.

Density vectors by ((ρNk (1), ρNk (2), . . . , ρNk (m)), k ≥ 0) defined by

ρNk (i) :=
1
N

∑
x∈VN

1{ηN
k (x)=i}, i ∈ {1, 2, . . . ,m}
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Previous results m = 1

When m = 1 the parameters are no longer vector, so we write αN and β.

Theorem (Durrett & Remenik ’09)
Suppose m = 1 and (GN)N∈N a sequence of random uniform 3-regular graphs.
Assume that the infection probability satisfies

αN → 0 and αN log(N)→∞, as N →∞

and also
ρN0

(d)−−→ p0 ∈ [0, 1] as N →∞.

Then the process (ρNk )k≥0 converges in distribution as (N →∞) to the
(deterministic) orbits (pk)k≥0 of an explicit dynamical system started at p0.
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Figure: Bifurcation diagram in β for the dynamical system.
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First extension : m = 1 and αN → α ∈ (0, 1)

Proposition (F-Linker-Remenik ’18)
Under the same hypothesis of Durrett & Remenik’s theorem, the convergence to
an explicit dynamical system is also true when αN → α ∈ (0, 1).

Figure: Left: Bifurcation diagram in β for the dynamical system with fixed α = 0.1.
Right: stochastic process simulations densities for α = 0.1 and different β’s.
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Define the effective offspring parameter

φ(αN , β) = β(1− α),

and the extinction time

τN = inf{k ≥ 0 : ρNk = 0}.

Theorem (F-Linker-Remenik ’18)
Extinction: When φ(αN , β) < 1 there is C > 0 independent of N such that

E(τN) ≤ C log(N). (1)

Survival: If φ(αN , β) > 1 and ρN0 the initial density is bounded away from 0,
then there exists c > 0 (depending only on ρN0 and αN) such that

E(τN) ≥ cN. (2)

Luis Fredes (Université de Bordeaux) Forest fires population model



Convergence m ≥ 2

Vectors again!

Theorem (F-Linker-Remenik ’18)

Consider m ≥ 2 and ~α ∈ [0, 1]m (epidemic parameters). If

~αN → ~α and αN(i) log(N)→∞ as N →∞, ∀i ∈ {1, ...,m},

and also
~ρN0

(d)−−→ ~p0 ∈ [0, 1] as N →∞.

Then, the sequence of density vectors (~ρk , k ≥ 0) converges for the product
topology to the orbits

(~pk , k ≥ 0)

of an explicit dynamical system depending on ~β and ~α.
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Survival and coexistence dynamical system m = 2

Proposition (F-Linker-Remenik ’18)
There are explicit regions of the parameter space giving either domination
(black/white regions) or coexistence (gray region) for the dynamical system.

Figure: Left α(1) = α(2) = 0 and right α(1) = α(2) = 0.1.
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Survival and coexistence of the stochastic process m = 2

Define ᾱ := min{α(1), α(2)}.

Theorem (F-Linker-Remenik ’18)
For m = 2, assume that ~ρN0 → ~p0. Then, under some technical condition:

1 In the domination regime (of the dynamical system):
The weakest type dies out in time of order log(N).
The strongest one survives for at least order{

e
√

log(N) if ᾱ = 0
N ᾱ/5 if ᾱ > 0.

2 In the coexistence regime (of the dynamical system):
Both types survive for at least order{

e
√

log(N) if ᾱ = 0
N ᾱ/5 if ᾱ > 0.
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Extensions

In words:
1 We proved the results when each egg is placed uniformly in
NN(x) = B(x , rN) with rN →∞ at a certain rate.

2 We can work with d-regular graphs instead.
Difficulties: the explicit dynamical system turns out to be ugly and the
regimes of domination and coexistence cannot be treated at once for a
generic d .

3 We think that for m = 1 the survival regime satisfies an expected absorption
time of exponential order.
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Thanks for your attention!
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