Survival and coexistence for spatial population models with forest fire epidemics.

Luis Fredes (With A. Linker (U. Chile) and D. Remenik (U. Chile).)

Random trees and graphs, Luminy, 2019

université **BORDEAUX**

Image: A math a math

Figure: Gypsy moth.

Figure: Egg masses.

Figure: Egg masses.

(日) (四) (王) (王) (王)

Figure: Configuration at time t. Moth living period.

◆□> ◆□> ◆三> ◆三> ・三 ・ のへで

Figure: Growth stage configuration time *t*. Random offspring of mean β .

Figure: Growth stage configuration time t. Random placement of eggs, uniformly in V_N for each egg.

Figure: Growth stage configuration time t. Moth die and assignation of sites is done.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Figure: Growth stage configuration time t. If there is more than one, only one survives (not enough room).

Figure: Epidemic stage configuration time t + 1/2. Epidemic attacks with probability α_N each site, independently.

Figure: Epidemic stage configuration time t + 1/2. Spreading of epidemic.

(日) (四) (注) (注) (注) (注)

Figure: Epidemic stage configuration time t + 1/2. Spreading of epidemic.

(日) (四) (注) (注) (注) (注)

Figure: Epidemic stage configuration time t + 1/2. Survivors.

Figure: Configuration time t + 1. Moth living period.

◆□> ◆□> ◆三> ◆三> ・三 ・ のへで

Multi-type moth model

Figure: Configuration at time t. Moth living period.

◆□> ◆□> ◆三> ◆三> ・三 ・ のへで

Figure: Growth stage configuration time t. Random offspring of mean β_i .

Figure: Growth stage configuration time t. Random placement of eggs, uniformly in V_N for each egg.

Figure: Growth stage configuration time t. Random placement of eggs, uniformly in V_N for each egg.

Figure: Epidemic stage configuration time t + 1/2. The type is assigned uniformly among all eggs that arrived to each vertex.

Figure: Epidemic stage configuration time t + 1/2. Epidemics attack with probability $\alpha_N(i)$ each site of type *i*, independently.

Figure: Epidemic stage configuration time t + 1/2. Spreading of epidemic.

Figure: Epidemic stage configuration time t + 1/2. Survivors.

◆□> ◆□> ◆三> ◆三> ・三 ・ のへで

Figure: Configuration time t + 1. Moth living period.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへで

Figure: Configuration time t + 1. Moth living period.

Figure: Configuration time t + 1. Moth living period.

If we just consider the growth stage, it is relatively simple to proof that the **fittest** species (i.e. Biggest β_i) will always dominate.

イロン イヨン イヨン ・

E • 9 € @

If we just consider the growth stage, it is relatively simple to proof that the **fittest** species (i.e. Biggest β_i) will always dominate.

Spoiler alert!

Forest fires epidemics **change** this behavior.

イロト イポト イヨト イヨト

Consider a graph $G_N = (V_N, E_N)$ with N vertices and $m \in \mathbb{N}^*$. The MMM is a discrete time Markov process $(\eta_k)_{k\geq 0}$ is defined using an initial configuration $\eta_0 \in \{0, 1, \ldots, m\}^{V_N}$ and 2 families of parameters:

0

$$\vec{\beta} = (\beta_1, \beta_2, \dots, \beta_m) \in \mathbb{R}^m_+$$

2

$$\vec{\alpha}_N = (\alpha_N(1), \alpha_N(2), \ldots, \alpha_N(m)) \in [0, 1]^m.$$

イロン イロン イヨン イヨン

E 990

Growth:

- Each individual dies.
- Before they die, they generate an offspring with mean $\beta_i > 0$ (indep).
- Each egg is sent to a random uniformly site in V_N (indep).
- The type is uniform among the eggs a site received; if none, the type is 0 (indep).

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ― 臣 ― 釣�()?

Growth:

- Each individual dies.
- Before they die, they generate an offspring with mean $\beta_i > 0$ (indep).
- Each egg is sent to a random uniformly site in V_N (indep).
- The type is uniform among the eggs a site received; if none, the type is 0 (indep).

Epidemic:

- Attack (indep) with probability $\alpha_N(i)$.
- It spreads to the connected component of the same type.

< ロ > < 同 > < 回 > < 回 > < □ > <

Growth:

- Each individual dies.
- Before they die, they generate an offspring with mean $\beta_i > 0$ (indep).
- Each egg is sent to a random uniformly site in V_N (indep).
- The type is uniform among the eggs a site received; if none, the type is 0 (indep).

Epidemic:

- Attack (indep) with probability $\alpha_N(i)$.
- It spreads to the connected component of the same type.

Density vectors by $((\rho_k^N(1), \rho_k^N(2), \dots, \rho_k^N(m)), k \ge 0)$ defined by

$$\rho_k^N(i) := \frac{1}{N} \sum_{x \in V_N} \mathbb{1}_{\{\eta_k^N(x) = i\}}, \quad i \in \{1, 2, \dots, m\}$$

When m = 1 the parameters are no longer vector, so we write α_N and β .

Theorem (Durrett & Remenik '09)

Suppose m = 1 and $(G_N)_{N \in \mathbb{N}}$ a sequence of random uniform 3-regular graphs. Assume that the infection probability satisfies

$$lpha_{N}
ightarrow 0$$
 and $lpha_{N} \log(N)
ightarrow \infty$, as $N
ightarrow \infty$

and also

$$ho_0^N \xrightarrow{(d)}
ho_0 \in [0,1] \quad \text{ as } \quad N o \infty.$$

Then the process $(\rho_k^N)_{k\geq 0}$ converges in distribution as $(N \to \infty)$ to the (deterministic) orbits $(p_k)_{k\geq 0}$ of an explicit dynamical system started at p_0 .

・ロト ・四ト ・ヨト ・ヨト

Figure: Bifurcation diagram in β for the dynamical system.

・ロト ・四ト ・ヨト ・ヨト

э

Proposition (F-Linker-Remenik '18)

Under the same hypothesis of Durrett & Remenik's theorem, the convergence to an explicit dynamical system is also true when $\alpha_N \to \alpha \in (0, 1)$.

イロト イポト イヨト イヨト

Proposition (F-Linker-Remenik '18)

Under the same hypothesis of Durrett & Remenik's theorem, the convergence to an explicit dynamical system is also true when $\alpha_N \to \alpha \in (0, 1)$.

Figure: Left: Bifurcation diagram in β for the dynamical system with fixed $\alpha = 0.1$. Right: stochastic process simulations densities for $\alpha = 0.1$ and different β 's.

< D > < A >

Define the effective offspring parameter

$$\phi(\alpha_N,\beta)=\beta(1-\alpha),$$

and the extinction time

$$\tau_N = \inf\{k \ge 0 : \rho_k^N = 0\}.$$

Theorem (F-Linker-Remenik '18)

• Extinction: When $\phi(\alpha_N, \beta) < 1$ there is C > 0 independent of N such that

$$\mathbb{E}(\tau_N) \le C \log(N). \tag{1}$$

Survival: If φ(α_N, β) > 1 and ρ₀^N the initial density is bounded away from 0, then there exists c > 0 (depending only on ρ₀^N and α_N) such that

$$\mathbb{E}(\tau_N) \ge cN. \tag{2}$$

イロト イヨト イヨト

Vectors again!

Theorem (F-Linker-Remenik '18)

Consider $m \ge 2$ and $\vec{\alpha} \in [0,1]^m$ (epidemic parameters). If

 $\vec{\alpha}_N \to \vec{\alpha}$ and $\alpha_N(i)\log(N) \to \infty$ as $N \to \infty, \forall i \in \{1, ..., m\},$

and also

$$ec{
ho}_0^{\mathcal{N}} \stackrel{(d)}{\longrightarrow} ec{
ho}_0 \in [0,1] \quad \textit{ as } \quad \mathcal{N} o \infty.$$

Then, the sequence of density vectors $(\vec{\rho}_k, k \ge 0)$ converges for the product topology to the orbits

 $(\vec{p}_k, k \ge 0)$

of an explicit dynamical system depending on $\vec{\beta}$ and $\vec{\alpha}$.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Survival and coexistence dynamical system m = 2

Proposition (F-Linker-Remenik '18)

There are explicit regions of the parameter space giving either domination (black/white regions) or coexistence (gray region) for the dynamical system.

Figure: Left $\alpha(1) = \alpha(2) = 0$ and right $\alpha(1) = \alpha(2) = 0.1$.

Define $\bar{\alpha} := \min\{\alpha(1), \alpha(2)\}.$

Theorem (F-Linker-Remenik '18)

For m = 2, assume that $\vec{\rho}_0^N \to \vec{p}_0$. Then, under some technical condition:

1 In the **domination regime** (of the dynamical system):

- The weakest type dies out in time of order log(N).
- The strongest one survives for at least order

$$\begin{cases} e^{\sqrt{\log(N)}} & \text{ if } \bar{\alpha} = 0\\ N^{\bar{\alpha}/5} & \text{ if } \bar{\alpha} > 0. \end{cases}$$

- In the coexistence regime (of the dynamical system):
 - Both types survive for at least order

$$\begin{cases} e^{\sqrt{\log(N)}} & \text{ if } \bar{\alpha} = 0\\ N^{\bar{\alpha}/5} & \text{ if } \bar{\alpha} > 0. \end{cases}$$

In words:

- We proved the results when each egg is placed uniformly in $\mathcal{N}_N(x) = B(x, r_N)$ with $r_N \to \infty$ at a certain rate.
- We can work with *d*-regular graphs instead.
 Difficulties: the explicit dynamical system turns out to be ugly and the regimes of domination and coexistence cannot be treated at once for a generic *d*.
- We think that for m = 1 the survival regime satisfies an expected absorption time of exponential order.

Thanks for your attention!

▲□▶▲□▶▲□▶▲□▶ = うくぐ