Almost triangular Markov chains on \mathbb{N}

Luis Fredes
(Work with J.F. Marckert)

IMB

université deBORDEAUX

Transition matrix: $M=\left[M_{i, j}\right]_{i, j \in S}$ with non-negative real entries that sum up to one on each row. A Markov chain Y with transition matrix M satisfies

Transition matrix: $M=\left[M_{i, j}\right]_{i, j \in S}$ with non-negative real entries that sum up to one on each row. A Markov chain Y with transition matrix M satisfies

Irreducible: every pair $a, b \in S$ has a finite sequence $\ell=\ell(a, b)$ of steps with positive probability ($M_{a, b}^{\ell}>0$) such that b can be reached from a.
From now on we assume irreducibility
Recurrence / Transience: A chain with transition matrix M is called recurrent if for all/one state $a \in S$ the probability to return to a is one, otherwise the chain is called transient.
Positive recurrence: The expected return time of all/one state $a \in S$ is finite, i.e. $\mathbb{E}_{a}\left(\tau_{a}^{+}\right)<+\infty$.

Invariant measure: A measure π on S is said to be invariant by M if,

$$
\sum_{a \in S} \pi_{a} M_{a, b}=\pi_{b} \quad \text { for all } b \in S
$$

Almost-upper triangular ∇ and almost-lower triangular \triangle

$$
\mathrm{U}:=\left[\begin{array}{cccccc}
\mathrm{U}_{0,0} & \mathrm{U}_{0,1} & \mathrm{U}_{0,2} & \mathrm{U}_{0,3} & \mathrm{U}_{0,4} & \cdots \\
\mathrm{U}_{1,0} & \mathrm{U}_{1,1} & \mathrm{U}_{1,2} & \mathrm{U}_{1,3} & \mathrm{U}_{1,4} & \cdots \\
0 & \mathrm{U}_{2,1} & \mathrm{U}_{2,2} & \mathrm{U}_{2,3} & \mathrm{U}_{2,4} & \cdots \\
0 & 0 & \mathrm{U}_{3,2} & \mathrm{U}_{3,3} & \mathrm{U}_{3,4} & \cdots \\
\vdots & \vdots & \vdots & \ddots & \ddots & \cdots
\end{array}\right], \mathrm{L}:=\left[\begin{array}{cccccc}
\mathrm{L}_{0,0} & \mathrm{~L}_{0,1} & 0 & 0 & 0 & \cdots \\
\mathrm{~L}_{\mathrm{L}_{2}, 0} & \mathrm{~L}_{1,1} & \mathrm{~L}_{1,2} & 0 & 0 & \cdots \\
\mathrm{~L}_{2,0} & \mathrm{~L}_{2,1} & \mathrm{~L}_{2,2} & \mathrm{~L}_{2,3} & 0 & \cdots \\
\mathrm{~L}_{3,0} & \mathrm{~L}_{3,1} & \mathrm{~L}_{3,2} & \mathrm{~L}_{3,3} & \mathrm{~L}_{3,4} & \cdots \\
\vdots & \vdots & \vdots & \ddots & \ddots & \cdots
\end{array}\right]
$$

Birth and death processes (BDP)

$$
\mathrm{T}=\left[\begin{array}{cccccc}
\mathrm{T}_{0,0} & \mathrm{~T}_{0,1} & 0 & 0 & 0 & \cdots \\
\mathrm{~T}_{1,0} & \mathrm{~T}_{1,1} & \mathrm{~T}_{1,2} & 0 & 0 & \cdots \\
0 & \mathrm{~T}_{2,1} & \mathrm{~T}_{2,2} & \mathrm{~T}_{2,3} & 0 & \cdots \\
0 & 0 & \mathrm{~T}_{3,2} & \mathrm{~T}_{3,3} & \mathrm{~T}_{3,4} & \cdots \\
\vdots & \vdots & \vdots & \ddots & \ddots & \ldots
\end{array}\right]
$$

Motivation

Almost-upper triangular ∇ and almost-lower triangular \triangle

Birth and death processes (BDP)

Theorem: Tridiagonal case (Karlin \& McGregor '57)

The following measure π with $\pi_{0}=1$

$$
\pi_{a}=\prod_{j=1}^{a} \frac{\mathrm{~T}_{j-1, j}}{\mathrm{~T}_{j, j-1}} \quad \text { for all } a \geq 1
$$

is the unique invariant by T up to a constant factor and the chain is

- positive recurrent if and only if

$$
\sum_{k \geq 1} \prod_{j=1}^{k} \frac{\mathrm{~T}_{j-1, j}}{\mathrm{~T}_{j, j-1}}<+\infty
$$

- recurrent if and only if

$$
\sum_{k \geq 0} \prod_{j=1}^{k} \frac{\mathrm{~T}_{j, j-1}}{\mathrm{~T}_{j, j+1}}=+\infty
$$

Theorem: Almost-upper triangular case (F. -Marckert '21)

The following measure π with $\pi_{0}=1$

$$
\pi_{a}:=\frac{\operatorname{det}\left(\operatorname{Id}-\mathrm{U}_{[0, a-1]}\right)}{\prod_{j=1}^{a} \mathrm{U}_{j, j-1}} \quad \text { for all } a \geq 1
$$

is the unique invariant by U up to a constant factor and the chain is

- positive recurrent if and only if

$$
\sum_{a=1}^{\infty} \frac{\operatorname{det}\left(\mathrm{Id}-\mathrm{U}_{[0, a-1]}\right)}{\prod_{j=1}^{a} \mathrm{U}_{j, j-1}}<\infty .
$$

- recurrent if and only if

$$
\lim _{b \rightarrow+\infty} \mathrm{U}_{1,0} \frac{\operatorname{det}\left(\mathrm{Id}-\mathrm{U}_{[2, b-1]}\right)}{\operatorname{det}\left(\operatorname{ld}-\mathrm{U}_{[1, b-1]}\right)}=1
$$

- Proof of the theorem for Almost-upper triangular.
- Almost-lower triangular.
- Link between almost-upper and almost-lower.
- Recovering the results of BDP with our results.
- Another model.

Combinatorial warm up I: Matrix tree theorem

$\mathrm{ST}(G)=$ set of spanning trees of G.

Matrix-tree theorem [Kirchhoff]

$$
|\mathrm{ST}(G)|=\operatorname{det}\left(\operatorname{Laplacian}_{G}^{(r)}\right)
$$

where Laplacian $n_{G}^{(r)}$ is the Laplacian matrix of G deprived of the line and column associated to r.

$$
\operatorname{Laplacian}_{G}(i, j)=\left[\operatorname{deg}\left(u_{i}\right) \mathbb{1}_{i=j}-\left|\left\{u_{i}, u_{j}\right\} \in E\right|\right]
$$

Combinatorial warm up I: Matrix tree theorem

$\mathrm{ST}(G)=$ set of spanning trees of G.

Matrix-tree theorem [Kirchhoff]

$$
|S T(G)|=\operatorname{det}\left(\operatorname{Laplacian}_{G}^{(r)}\right),
$$

where Laplacian ${ }_{G}^{(r)}$ is the Laplacian matrix of G deprived of the line and column associated to r.
$\operatorname{Laplacian}_{G}(i, j)=\left[\operatorname{deg}\left(u_{i}\right) \mathbb{1}_{i=j}-\left|\left\{u_{i}, u_{j}\right\} \in E\right|\right]$

Laplacian $_{\mathrm{G}}=\left(\begin{array}{cccccc}3 & -1 & 0 & -1 & 0 & -1 \\ -1 & 5 & -2 & -1 & -1 & 0 \\ 0 & -2 & 3 & 0 & -1 & 0 \\ -1 & -1 & 0 & 3 & -1 & 0 \\ 0 & -1 & -1 & -1 & 4 & -1 \\ -1 & 0 & 0 & 0 & -1 & 2\end{array}\right)$

$$
|\operatorname{ST}(G)|=\operatorname{det}\left(\operatorname{Laplacian}_{G}^{(A)}\right)=98 .
$$

ST $(G, r):=$ set of spanning trees of G (finite graph) rooted at r.

$W_{M}(T, r):=\prod_{\vec{e} \in T} M_{\vec{e}}$ with edges pointing towards the root r.

Weighted Matrix-tree theorem [Kirchhoff]

$$
\sum_{T \in \operatorname{ST}(G, r)} W_{M}(T, r)=\operatorname{det}\left(\mathrm{ld}-M^{(r)}\right),
$$

where $M^{(r)}$ is the matrix M deprived of the line and column r.

ST $(G, r):=$ set of spanning trees of G (finite graph) rooted at r.

$W_{M}(T, r):=\prod_{\vec{e} \in T} M_{\vec{e}}$ with edges pointing towards the root r.
Weighted Matrix-tree theorem [Kirchhoff]

$$
\sum_{T \in \operatorname{ST}(G, r)} W_{M}(T, r)=\operatorname{det}\left(\mathrm{ld}-M^{(r)}\right),
$$

where $M^{(r)}$ is the matrix M deprived of the line and column r.

Forest $(N, R)=$ set of spanning forests of N containing the roots in $R \subset N$. We consider each tree oriented towards its root.

Proposition (F.-Marckert'21)

Consider the graph $G=\left(\mathbb{N},\left\{(i, j): U_{i, j}>0\right\}\right)$, weighted by the transition matrix U almost-upper triangular. We have

$$
\sum_{\left.F \in \text { Forest }^{\mathbb{N}}[x+\infty)\right)} W_{U}(F)=\operatorname{det}\left((\operatorname{Id}-U)_{[0, x-1]}\right) .
$$

Markov chain tree theorem

The invariant probability measure ρ of M satisfies

$$
\rho_{v} \stackrel{(\mathrm{Alg})}{=} \frac{\operatorname{det}\left(I-M^{(v)}\right)}{Z} \stackrel{(\mathrm{MTT})}{=} \frac{\sum_{T \in \mathrm{ST}(G, v)} W_{M}(T, v)}{Z}
$$

Uniqueness of the invariant measure: Triangular system

$$
\pi_{b}=\sum_{a \leq b+1} \pi_{a} \mathrm{U}_{a, b} \Longleftrightarrow \pi_{b+1}=\left(\pi_{b}-\sum_{a \leq b} \pi_{a} \mathrm{U}_{a, b}\right) / \mathrm{U}_{b+1, b}
$$

Explicit expression and positive recurrence criteria: Set $\mathrm{U}(n)$ as the matrix in $\mathbb{N} \cap[0, n]$ (chain truncated at n)

$$
\left\{\begin{array}{l}
\mathrm{U}(n)_{i, j}=\mathrm{U}_{i, j}, \quad \text { for } \quad i \in[0, n], j \in[0, n-1] \\
\mathrm{U}(n)_{i, n}=\sum_{j \geq n} \mathrm{U}_{i, j} .
\end{array}\right.
$$

From the Markov chain tree theorem $(U(n)$ lives on a finite state space)

$$
\rho_{\mathrm{a}}(n)=\alpha_{n} \operatorname{det}\left(\operatorname{ld}-\mathrm{U}(n)^{(\mathrm{a})}\right)
$$

Claim: there exist α_{n}^{\prime} such that

$$
\begin{aligned}
\operatorname{det}\left(\mathrm{Id}-\mathrm{U}(n)^{(a)}\right) & =\operatorname{det}\left(\mathrm{Id}-\mathrm{U}_{[0, a-1]}\right) \prod_{j=a+1}^{n} \mathrm{U}_{a, a-1} \\
& =\alpha_{n}^{\prime} \operatorname{det}\left(\mathrm{Id}-\mathrm{U}_{[0, a-1]}\right) / \prod_{j=1}^{a} \mathrm{U}_{a, a-1} .
\end{aligned}
$$

Claim: there exist α_{n}^{\prime} such that

Claim: there exist α_{n}^{\prime} such that

All transitions on the RHS of first line come from points in $[0, n]$ and go to points in $[0, n-1]$, in particular here $U(n)$ and U coincide.

Claim: there exist α_{n}^{\prime} such that

$$
\begin{aligned}
\operatorname{det}\left(\mathrm{Id}-\mathrm{U}(n)^{(a)}\right) & =\operatorname{det}\left(\mathrm{Id}-\mathrm{U}_{[0, a-1]}\right) \prod_{j=a+1}^{n} \mathrm{U}_{a, a-1} \\
& =\alpha_{n}^{\prime} \operatorname{det}\left(\mathrm{Id}-\mathrm{U}_{[0, a-1]}\right) / \prod_{j=1}^{a} \mathrm{U}_{a, a-1} .
\end{aligned}
$$

All transitions on the RHS of first line come from points in $[0, n]$ and go to points in $[0, n-1]$, in particular here $U(n)$ and U coincide.

$$
\prod_{j=1}^{n} U_{a, a-1}^{(n)}=\prod_{j=1}^{n} U_{a, a-1}
$$

Gathering everything

$$
\frac{\rho(n)_{a}}{\alpha_{n} \alpha_{n}^{\prime}}=\frac{\operatorname{det}\left(\mathrm{Id}-\mathrm{U}_{[0, a-1]}\right)}{\prod_{j=1}^{a} \mathrm{U}_{\mathrm{a}, \mathrm{a}-1}}=\pi_{a}
$$

the result follows from the following lemma.

Lemma (F.-Marckert'21)

The transition matrix U admits π as an invariant positive measure, if and only if there exists a sequence $\left(c_{n}, n \geq 0\right)$ such that $c_{n} \rho(n) \rightarrow \pi$ weakly.

Combinatorial warm up II: Heaps of pieces

Informally: some "elements" that are stacked.

Formally: a set of letters \mathcal{P} is given and a binary relation R :
$-x$ Ry means that x commutes with y (that is $x y=y x$),
$-x R y$ means that x does not commute with y.
Heap of dominos: $\mathcal{P}=\{a, b, c, d, e\} a R b, b R c, c R d, d R e$.

Heaps: Equivalence classes of words

$w \sim w^{\prime}$ if they are equal up to a finite number of allowed commutations of consecutive letters.

General heap: (left) Equivalence class of words describing the history of the stack $=$ baeddecb $=$ baeddceb $=$ ebaddbce $=\ldots$.
Trivial heap: (right) All the pieces on the ground $a e=e a$

Heap of pieces

Figure: Heaps of squares. They do not commute if they share a side.

Figure: Heaps of outgoing edges. They do not commute if they start at the same point.

Heap of pieces

For a heap H

$$
\text { Weight }(H)=\prod_{e \in H} w(e)
$$

where $w: \mathcal{P} \rightarrow \mathbb{R}$ (or any formal commutative set)

Inversion lemma

$$
\sum_{H \in \text { Heaps }} \operatorname{Weight}(H)=\frac{1}{\sum_{H \in \text { TrivialHeaps }}(-1)^{|H|} \text { Weight }(H)}
$$

Example : Weight x for each piece, Weight $(H)=x^{|H|}$,

$$
\sum_{H \in \text { Heaps }} \operatorname{Weight}(H)=\frac{1}{1-5 x+6 x^{2}-x^{3}}
$$

In particular for the heaps of oriented cycles (HC) avoiding 0 with weights given by $M=\left(M_{i, j}\right)_{i, j \in[0, n]}$

$$
\begin{aligned}
\sum_{\begin{array}{c}
C \subset \in \text { Heaps } \\
\text { avoiding } 0
\end{array}} W(H C) & =\left(\sum_{\substack{H \in \text { ThitialHfeaps } \\
\text { avoiding } 0}}(-1)^{|H C|} W_{M}(H C)\right)^{-1} \\
& =\left(\sum_{C \in \mathcal{C}}(-1)^{N(C)} \prod_{c \text { cycles of }} \prod_{\vec{e} \in c} M_{\vec{e}}\right)^{-1} \\
& =\operatorname{det}\left(I-M^{(0)}\right)^{-1}
\end{aligned}
$$

where the last sum ranges over $\mathcal{C}=$ set of collection of disjoint oriented cycles of length ≥ 1 avoiding 0 .

Generalised inversion lemma

For \mathcal{P} a set of pieces and $\mathcal{M} \subset \mathcal{P}$ one has

$$
\sum_{\substack{H \in \operatorname{Heaps}(\mathcal{P}), \\ \text { maximal piece } \in \mathcal{M}}} \operatorname{Weight}(H)=\frac{\sum_{H \in \operatorname{TrivialHeaps}(\mathcal{P} \backslash \mathcal{M})}(-1)^{|H|} \operatorname{Weight}(H)}{\sum_{H \in \operatorname{TrivialHeaps}(\mathcal{P})}(-1)^{|H|} \operatorname{Weight}(H)}
$$

For Y a Markov chain with transition matrix U consider the hitting time of the set A as $\tau_{A}=\inf \left\{n \geq 0: Y_{n} \in A\right\}$

$$
u_{b}=\mathbb{P}\left(\tau_{0}(Y) \leq \tau_{[b,+\infty)}(Y) \mid Y_{0}=1\right)
$$

Recurrence iff $u_{b} \rightarrow 1$ as $b \rightarrow \infty$.

For Y a Markov chain with transition matrix U consider the hitting time of the set A as $\tau_{A}=\inf \left\{n \geq 0: Y_{n} \in A\right\}$

$$
u_{b}=\mathbb{P}\left(\tau_{0}(Y) \leq \tau_{[b,+\infty)}(Y) \mid Y_{0}=1\right)
$$

Recurrence iff $u_{b} \rightarrow 1$ as $b \rightarrow \infty$.
Proof : Let w be any path starting from 1, ending at 0 and staying completely in [0, b-1].

For Y a Markov chain with transition matrix U consider the hitting time of the set A as $\tau_{A}=\inf \left\{n \geq 0: Y_{n} \in A\right\}$

$$
u_{b}=\mathbb{P}\left(\tau_{0}(Y) \leq \tau_{[b,+\infty)}(Y) \mid Y_{0}=1\right)
$$

Recurrence iff $u_{b} \rightarrow 1$ as $b \rightarrow \infty$.
Proof : Let w be any path starting from 1 , ending at 0 and staying completely in [$0, b-1$].

- Notice that $w=w_{1}(1,0)$ where w_{1} is a path starting and ending at 1 and staying completely in $[1, b-1]$, therefore it can be seen as a heap of cycles in [$1, b-1$] with maximal piece adjacent to 1 .

For Y a Markov chain with transition matrix U consider the hitting time of the set A as $\tau_{A}=\inf \left\{n \geq 0: Y_{n} \in A\right\}$

$$
u_{b}=\mathbb{P}\left(\tau_{0}(Y) \leq \tau_{[b,+\infty)}(Y) \mid Y_{0}=1\right)
$$

Recurrence iff $u_{b} \rightarrow 1$ as $b \rightarrow \infty$.
Proof : Let w be any path starting from 1, ending at 0 and staying completely in [$0, b-1$].

- Notice that $w=w_{1}(1,0)$ where w_{1} is a path starting and ending at 1 and staying completely in $[1, b-1]$, therefore it can be seen as a heap of cycles in [$1, b-1$] with maximal piece adjacent to 1 .
- By the generalized inversion lemma we have that

$$
u_{b}=\frac{\operatorname{det}\left(\operatorname{Id}-\mathrm{U}_{[2, b-1]}\right)}{\operatorname{det}\left(\operatorname{Id}-\mathrm{U}_{[1, b-1]}\right)} \mathrm{U}_{1,0}
$$

For Y a Markov chain with transition matrix U consider the hitting time of the set A as $\tau_{A}=\inf \left\{n \geq 0: Y_{n} \in A\right\}$

$$
u_{b}(x)=\mathbb{P}\left(\tau_{0}(Y) \leq \tau_{[b,+\infty)}(Y) \mid Y_{0}=x\right)
$$

Recurrence iff $u_{b} \rightarrow 1$ as $b \rightarrow \infty$.
Proof : Let w be any path starting from 1, ending at 0 and staying completely in [0, b-1].

- Notice that $w=w_{1}(1,0)$ where w_{1} is a path starting and ending at 1 and staying completely in $[1, b-1]$, therefore it can be seen as a heap of cycles in [$1, b-1$] with maximal piece adjacent to 1 .
- By the generalized inversion lemma we have that

$$
u_{b}(x)=\frac{\operatorname{det}\left(\mathrm{Id}-\mathrm{U}_{[x+1, b-1]}\right)}{\operatorname{det}\left(\mathrm{Id}-\mathrm{U}_{[1, b-1]}\right)} \prod_{j=1}^{x} \mathrm{U}_{j, j-1}
$$

Theorem : Almost-lower triangular criteria (F.-Marckert'21)

Invariant measure

- Finite state space $\mathbb{N} \cap[0, s]$ the following measure π with $\pi_{0}=1$

$$
\pi_{a}=\pi_{0} \operatorname{det}\left(\mathrm{Id}-\mathrm{L}_{[a+1, \mathrm{~s}]}\right) \prod_{i=1}^{a} \mathrm{~L}_{i-1, i} \quad \text { for all } a \in[1, s] .
$$

is the unique invariant by L up to a constant factor.

- Infinite state space \mathbb{N} the Markov chain may have none, one or multiple invariant measures (we give examples of each case).
- The Markov chain is recurrent if and only if

$$
\lim _{b \rightarrow+\infty} \frac{\prod_{j=1}^{b-1} L_{j, j+1}}{\operatorname{det}\left(\operatorname{Id}-L_{[1, b-1]}\right)}=0 .
$$

Connection between almost-upper and almost-lower

Proposition

Consider an irreducible ∇ transition matrix U , with invariant measure π. Set L as

$$
\mathrm{L}_{i, j}=\frac{\pi_{j}}{\pi_{i}} \mathrm{U}_{j, i} .
$$

Then,

- L is an irreducible \triangle transition matrix on \mathbb{N}, with invariant measure π too.
- L is recurrent if and only if U is recurrent.
- L is positive recurrent if and only if U is positive recurrent.

Recovering the results of Karlin \& McGregor with ours

Invariant measure and positive recurrence criteria: tridiagonal case The uniqueness of the invariant measure with $\pi_{0}=1$ gives the equality of two formulas for the invariant mesure (Karlin-McGregor and F.-Marckert)

$$
\frac{\operatorname{det}\left(\mathrm{Id}-\mathrm{T}_{[0, a-1]}\right)}{\prod_{j=1}^{a} \mathrm{~T}_{j, j-1}}=\prod_{j=1}^{a} \frac{\mathrm{~T}_{j-1, j}}{\mathrm{~T}_{j, j-1}} \quad \forall a \geq 1
$$

then, the positive recurrence criteria is recovered.

Recovering the results of Karlin \& McGregor with ours

Recurrence criteria

Set $D_{i, j}=\operatorname{det}\left(\mathrm{Id}-\mathrm{T}_{[i, j]}\right)$, then

$$
\begin{equation*}
D_{i, j}=\left(1-\mathrm{T}_{i, i}\right) D_{i+1, j}-\mathrm{T}_{i, i+1} \mathrm{~T}_{i+1, i} D_{i+2, j}, \tag{1}
\end{equation*}
$$

and set

$$
z_{i, j}:=\frac{D_{i, j}}{D_{i+1, j} T_{i, i-1}}
$$

and notice that our result translates into: the MC with transition matrix T is recurrent iff

$$
\lim _{b \rightarrow+\infty} \mathrm{T}_{1,0} \frac{\operatorname{det}\left(\operatorname{Id}-\mathrm{T}_{[2, b-1]}\right)}{\operatorname{det}\left(\operatorname{ld}-\mathrm{T}_{[1, b-1]}\right)}=\lim _{b \rightarrow+\infty} \frac{1}{Z_{1, b-1}}=1
$$

(1) rewrites

$$
Z_{i, j}=\frac{\left(1-\mathrm{T}_{i, i}\right)}{T_{i, i-1}}-\frac{\frac{\mathrm{T}_{i, i+1}}{\mathrm{~T}_{i, i-1}}}{Z_{i+1, j}},
$$

which gives the convergents of a continued fraction.

$$
Z_{1, b-1}:=c_{1}+\frac{a_{2}}{c_{2}+\frac{a_{3}}{\ddots+\frac{\ddots}{c_{b-2}+\frac{a_{b-1}}{c_{b-1}}}}}
$$

These can be solved and give that

$$
Z_{1, b-1}=1+\left(\sum_{k=1}^{b-1} \prod_{j=1}^{k} \frac{\mathrm{~T}_{j, j-1}}{\mathrm{~T}_{j, j+1}}\right)^{-1}
$$

So that $\lim _{b \rightarrow \infty} Z_{1, b-1}=1$ is equivalent to Karlin \& McGregor's recurrence criteria.

$$
\sum_{k \geq 0} \prod_{j=1}^{k} \frac{\top_{j, j-1}}{\mathrm{~T}_{j, j+1}}=+\infty
$$

Repair shop

The Repair shop Markov chain is defined by $X_{n}=\left(X_{n-1}-1\right)_{+}+Z_{n}$, with $\left(Z_{i}\right)_{i \in \mathbb{N}}$ i.i.d. family having $\mathbb{P}\left(Z_{k}=i\right)=a_{i}$, i.e. with kernel

$$
\mathrm{A}:=\left[\begin{array}{cccccc}
a_{0} & a_{1} & a_{2} & a_{3} & a_{4} & \cdots \\
a_{0} & a_{1} & a_{2} & a_{3} & a_{4} & \cdots \\
0 & a_{0} & a_{1} & a_{2} & a_{3} & \cdots \\
0 & 0 & a_{0} & a_{1} & a_{2} & \cdots \\
\vdots & \vdots & \vdots & \ddots & \ddots & \cdots
\end{array}\right]
$$

and denote by m the expectation of Z_{1} (i.e. $m=\sum_{i \in \mathbb{N}} i a_{i}$)

Criteria for the repair shop (Brémaud '13)

The Repair shop Markov chain is

- positive recurrent iff $m<1$,
- recurrent iff $m \leq 1$.

