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Particle system

Define a set of x colors E,, :={0,1,...,x — 1} for

k€ {0,2,3,... }.

An interacting particle system (IPS) is a stochastic
process (7;)tcr+ embedded on a graph G = (V/, E) with
configuration space in SY. We will work with S = E,. and
with G = Z,7Z/nZ. .
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Contact process
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General case
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Invariant measure of particle system

Definition

A distribution p on EY is said to be invariant if nt ~ yu for
any t > 0, when n° ~ p.
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Invariant measure of particle system

Definition

A distribution p on EY is said to be invariant if nt ~ yu for
any t > 0, when n° ~ p.

Usual questions in the topic:
o Existence?
o Uniqueness?
o Convergence?
o Rate of convergence?

o Simple representation? (Integrability)
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Some things (not much) are known about I.I.D.
random invariant distributions of IPS.
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Consider a Markov distribution (MD) (p, M), with Markov
Kernel (MK) M of memory m =1 and p the invariant

measure of M, i.e. for any x € E,Ea’bﬂ

b—1
P(X[a, b] = x) = px, H M .1
j=a
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Denote by pf the measure of the process on EZ at time
t>0.

t>0 - Y ~ =

—————————————————————————————————
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Definition
A process (Xk, k € 7Z/nZ) taking its values in EF/™ s said
to have a Gibbs distribution G(M) characterized by a MK
M, if for any x € glon=1l

[T
_j:O XjsXj+1 mod n

PX[0.n—1] =x) = Trace(M")
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Theorem 1 (F- Marckert '17)

Let E, be finite, L=2, m=1. If M > 0 then the
following statements are equivalent for the couple (T, M):

@ (p, M) is invariant by T on Z.

@ G(M) is invariant by T on Z/nZ, for all n > 3

@ G(M) is invariant by T on Z/7Z

@ A finite system of equations of degree 7 in M and linear
in T.
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Suppose 't is described with a MD. For any x € E,El’”ﬂ we
define

. 0
Linel" T (x) 1= -1ty 1 (%)
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Suppose 't is described with a MD. For any x € E[[1 "

define
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MT(
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3

_ Z nyx[[ Ln+2]) D Thgaluy

X—1-%0: Jj= u,v)€EE?
Lae (uv)eE?

where w differs from x in wX[k, k + 1] = (u, v).
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e Define for every a, b, c,d € E,

M, M, M, 4
ZM,T = T , a,ulVly,vVly, _ Tout
a,b,c,d (u7v§);E’3 [u7 |b7C] Ma7be7CMC,d [b,C]
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Definition
A Gibbs measure with kernel M is said to be invariant by T
on Z/nZ when Cycle, = 0, where

Cycle,(x)

n—1
= (A Tttt — T )

j=0 u,veE,

where w differs from x in w*[k, k + 1 mod n] = (u, v).
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Definition
A Gibbs measure with kernel M is said to be invariant by T
on Z/nZ when Cycle, = 0, where
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Extensions
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Memory and amplitude

Theorem 1 (F- Marckert)

Let E, be finite, L=2, m=1. If M > 0 then the
following statements are equivalent:

@ (p, M) is invariant by T on Z.
@ G(M) is invariant by T on Z/nZ, for all n > 3
@ G(M) is invariant by T on Z/7Z

@ A finite system of equations of degree 7 in M and linear
in T.

.
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Memory and amplitude

Theorem 1- Strongest form (F- Marckert '17)

Let E,. be finite, L > 2, m € N. If M > 0 then the
following statements are equivalent:

@ (p, M) is invariant by T on Z.

@ G(M) is invariant by T on Z/nZ, for all n > m+ L

@ G(M) is invariant by T on Z/hZ

@ A finite system of equations of degree h in M and linear
in T.

h=4m+ 2L —1

.
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Other extensions:

o Theorem 1 when kK = 0.
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o We link our results with the TASEP's matrix ansatz.
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Other extensions:

o Theorem 1 when Kk = 0.

o I.1.D. invariant measures on Z2.

11
00

T

11
00

01
10

o We link our results with the TASEP's matrix ansatz.

e Problem: MK with zero entries.
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Applications

Invariant measures of discrete IPS 20 / 23



Theorem 3 (F.- Marckert '17)

Consider k < 0o. Consider an IRM T with amplitude L,
which is not identically 0.

If for infinitely many integers n the IPS with IRM T
possesses an absorbing subset S, of E,?/"Z, with

aCS, C EZ/™ Then, there does not exist any MD with
any memory m with full support, invariant by T on the Iine.)
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Consider k < 0o. Consider an IRM T with amplitude L,
which is not identically 0.

If for infinitely many integers n the IPS with IRM T
possesses an absorbing subset S, of E,?/"Z, with

aCS, C EZ/™ Then, there does not exist any MD with
any memory m with full support, invariant by T on the Iine.j

The contact process do not have a MD of any memory
m > 0 as invariant distribution.
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Summary of other applications

o Thecase k =2, m=1 and L = 2 is totally explicitly
solved.
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Summary of other applications

o Thecase k =2, m=1 and L = 2 is totally explicitly
solved.

o For Kk < 0o, L =2 and m = 1 we have an algorithm to
find the set of all possible M MK which are invariant
for a given T.

o Examples of I.I.D. invariant measures on Z2.

o Zero range, voter model, etc. Also when we make mild
changes on these models we have some results.

e We find an IRM T which possesses some hidden
Markov chain as invariant distributions. It is done using
a projection from Ejz to E>.
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Thank youl
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