Invariant measures of discrete interacting particles systems: algebraic aspects

Luis Fredes

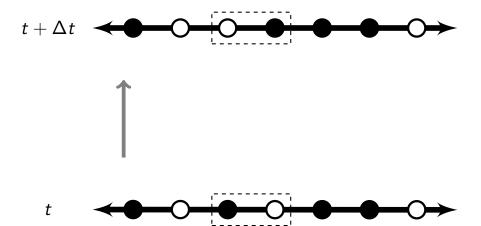
(joint work with J.F. Marckert).

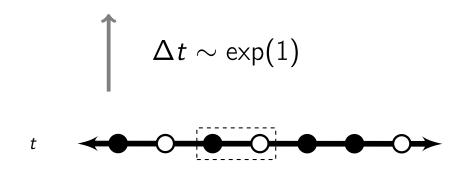
École d'été St. Flour 2018

Université [®]BORDEAUX

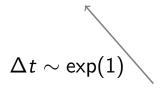
Define a set of κ colors $E_{\kappa} := \{0, 1, \dots, \kappa - 1\}$ for $\kappa \in \{\infty, 2, 3, \dots\}$. An **interacting particle system (IPS)** is a stochastic process $(\eta_t)_{t \in \mathbb{R}^+}$ embedded on a graph G = (V, E) with configuration space in S^V . We will work with $S = E_{\kappa}$ and with $G = \mathbb{Z}, \mathbb{Z}/n\mathbb{Z}$.

Define a set of κ colors $E_{\kappa} := \{0, 1, \dots, \kappa - 1\}$ for $\kappa \in \{\infty, 2, 3, \dots\}$. An **interacting particle system (IPS)** is a stochastic process $(\eta_t)_{t \in \mathbb{R}^+}$ embedded on a graph G = (V, E) with configuration space in S^V . We will work with $S = E_{\kappa}$ and with $G = \mathbb{Z}, \mathbb{Z}/n\mathbb{Z}$.

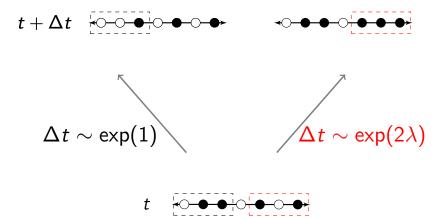




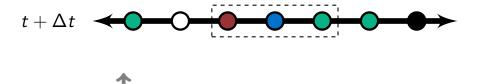
Contact process

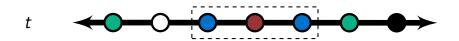


Contact process

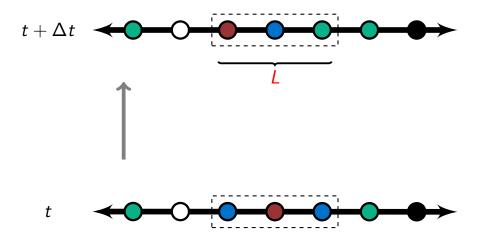


General case

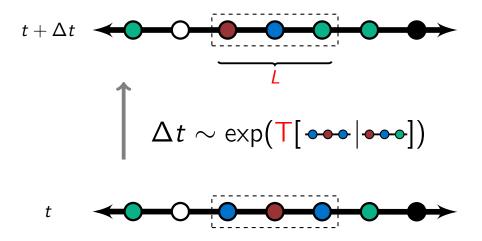




General case



General case



Definition

A distribution μ on E_{κ}^{V} is said to be *invariant* if $\eta^{t} \sim \mu$ for any $t \geq 0$, when $\eta^{0} \sim \mu$.

Definition

A distribution μ on E_{κ}^{V} is said to be *invariant* if $\eta^{t} \sim \mu$ for any $t \geq 0$, when $\eta^{0} \sim \mu$.

Definition

A distribution μ on E_{κ}^{V} is said to be *invariant* if $\eta^{t} \sim \mu$ for any $t \geq 0$, when $\eta^{0} \sim \mu$.

Usual questions in the topic:

• Existence?

Definition

A distribution μ on E_{κ}^{V} is said to be *invariant* if $\eta^{t} \sim \mu$ for any $t \geq 0$, when $\eta^{0} \sim \mu$.

- Existence?
- Uniqueness?

Definition

A distribution μ on E_{κ}^{V} is said to be *invariant* if $\eta^{t} \sim \mu$ for any $t \geq 0$, when $\eta^{0} \sim \mu$.

- Existence?
- Uniqueness?
- Convergence?

Definition

A distribution μ on E_{κ}^{V} is said to be *invariant* if $\eta^{t} \sim \mu$ for any $t \geq 0$, when $\eta^{0} \sim \mu$.

- Existence?
- Uniqueness?
- Convergence?
- Rate of convergence?

Definition

A distribution μ on E_{κ}^{V} is said to be *invariant* if $\eta^{t} \sim \mu$ for any $t \geq 0$, when $\eta^{0} \sim \mu$.

- Existence?
- Uniqueness?
- Convergence?
- Rate of convergence?
- Simple representation?

Definition

A distribution μ on E_{κ}^{V} is said to be *invariant* if $\eta^{t} \sim \mu$ for any $t \geq 0$, when $\eta^{0} \sim \mu$.

- Existence?
- Uniqueness?
- Convergence?
- Rate of convergence?
- Simple representation? (Integrability)

Some things (not much) are known about I.I.D. random invariant distributions of IPS.

Some things (not much) are known about I.I.D. random invariant distributions of IPS. [Andjel '82, Ferrari '93, Balazs-Rassoul-Agha-Seppalainen-Sethuraman '07, Borodin-Corwin '11, Faifrová-Gobron-Saada '16...] Some things (not much) are known about I.I.D. random invariant distributions of IPS. [Andjel '82, Ferrari '93, Balazs-Rassoul-Agha-Seppalainen-Sethuraman '07, Borodin-Corwin '11, Faifrová-Gobron-Saada '16...]

What about another type of distribution?

Some things (not much) are known about I.I.D. random invariant distributions of IPS. [Andjel '82, Ferrari '93, Balazs-Rassoul-Agha-Seppalainen-Sethuraman '07, Borodin-Corwin '11, Faifrová-Gobron-Saada '16...]

What about another type of distribution?

MARKOV!!!!!!

Consider a Markov distribution (MD) (ρ , M), with Markov Kernel (MK) M of memory m = 1 and ρ the invariant measure of M, i.e. for any $x \in E_{\kappa}^{[\![a,b]\!]}$

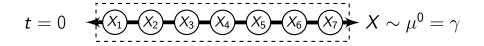
$$\mathbb{P}(X\llbracket a,b\rrbracket = x) = \rho_{x_a} \prod_{j=a}^{b-1} M_{x_j,x_{j+1}}$$

٠

Consider a Markov distribution (MD) (ρ , M), with Markov Kernel (MK) M of memory m = 1 and ρ the invariant measure of M, i.e. for any $x \in E_{\kappa}^{[\![a,b]\!]}$

$$\mathbb{P}(X\llbracket a,b\rrbracket = x) = \rho_{x_a} \prod_{j=a}^{b-1} M_{x_j,x_{j+1}} =: \gamma(x).$$

Denote by μ^t the measure of the process on $E_{\kappa}^{\mathbb{Z}}$ at time t > 0. $- \underbrace{Y_2}_{Y_3} - \underbrace{Y_3}_{Y_4} - \underbrace{Y_5}_{Y_5} - \underbrace{Y_6}_{Y_6} - \underbrace{Y_7}_{Y_7} \stackrel{:}{\succ} Y \sim \mu^t = \gamma$ t > 0Evolution under T



Definition

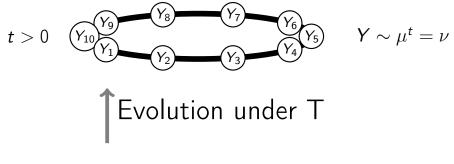
A process $(X_k, k \in \mathbb{Z}/n\mathbb{Z})$ taking its values in $E_{\kappa}^{\mathbb{Z}/n\mathbb{Z}}$ is said to have a Gibbs distribution G(M) characterized by a MK M, if for any $x \in E_{\kappa}^{[0,n-1]}$,

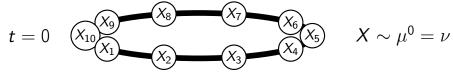
$$\mathbb{P}(X[[0, n-1]] = x) = \frac{\prod_{j=0}^{n-1} M_{x_j, x_{j+1 \mod n}}}{\text{Trace}(M^n)}$$

Definition

A process $(X_k, k \in \mathbb{Z}/n\mathbb{Z})$ taking its values in $E_{\kappa}^{\mathbb{Z}/n\mathbb{Z}}$ is said to have a Gibbs distribution G(M) characterized by a MK M, if for any $x \in E_{\kappa}^{[0,n-1]}$,

$$\mathbb{P}(X[[0, n-1]] = x) = \frac{\prod_{j=0}^{n-1} M_{x_j, x_{j+1 \mod n}}}{\operatorname{Trace}(M^n)} =: \nu(x).$$





Theorem 1 (F- Marckert '17)

Let E_{κ} be finite, L = 2, m = 1. If M > 0 then the

following statements are equivalent for the couple (T, M):

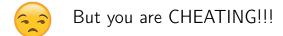
•
$$(
ho, M)$$
 is invariant by T on $\mathbb Z$

- G(M) is invariant by T on $\mathbb{Z}/n\mathbb{Z}$, for all $n \geq 3$
- G(M) is invariant by T on $\mathbb{Z}/7\mathbb{Z}$
- A finite system of equations of degree 7 in *M* and linear in *T*.

$$\operatorname{Line}_{n}^{M,\mathsf{T}}(x) := \frac{\partial}{\partial t} \mu_{\llbracket 1,n \rrbracket}^{t}(x)$$

$$\mathsf{Line}_{n}^{M,\mathsf{T}}(x) := \frac{\partial}{\partial t} \mu_{\llbracket 1,n \rrbracket}^{t}(x)$$

Definition



$$\mathsf{Line}_{n}^{M,\mathsf{T}}(x) := \frac{\partial}{\partial t} \mu_{\llbracket 1,n \rrbracket}^{t}(x)$$

Definition

 $\operatorname{Line}_{n}^{M,\mathsf{T}}(x) := \frac{\partial}{\partial t} \mu^{t}_{\llbracket 1,n \rrbracket}(x)$

Mass creation rate of x

– Mass destruction rate of x

Definition

$$\mathsf{Line}_{n}^{M,\mathsf{T}}(x) := \frac{\partial}{\partial t} \mu_{\llbracket 1,n \rrbracket}^{t}(x)$$
$$= \lim_{h \to 0} \sum_{w \in E_{\kappa}^{\mathbb{Z}}} \mathbb{P}(\eta^{t+h}\llbracket 1,n \rrbracket = x | \eta^{t} = w)$$

– Mass destruction rate of x

Definition

$$\operatorname{Line}_{n}^{M,\mathsf{T}}(x) := \frac{\partial}{\partial t} \mu_{\llbracket 1,n \rrbracket}^{t}(x)$$
$$= \lim_{h \to 0} \sum_{w \in E_{\kappa}^{\mathbb{Z}}} \mathbb{P}(\eta^{t+h}\llbracket 1,n \rrbracket = x | \eta^{t} = w)$$

$$-\lim_{h\to 0}\sum_{w\in E_{\kappa}^{\mathbb{Z}}}\mathbb{P}(\eta^{t+h}=w|\eta^t\llbracket 1,n\rrbracket=x)$$

Definition

$$\operatorname{Line}_{n}^{M,\mathsf{T}}(x) := \frac{\partial}{\partial t} \mu_{\llbracket 1,n \rrbracket}^{t}(x)$$
$$= \lim_{h \to 0} \sum_{w \in E_{\kappa}^{\mathbb{Z}}} \mathbb{P}(\eta^{t+h}\llbracket 1,n \rrbracket = x | \eta^{t} = w)$$

$$-\sum_{\substack{x_{-1},x_0,\\x_{n+1},x_{n+2}\in E_{\kappa}}}\sum_{j=0}^n\gamma(x\llbracket-1,n+2\rrbracket)\sum_{(u,v)\in E_{\kappa}^2}\mathsf{T}_{[x_j,x_{j+1}|u,v]}$$

where w^k differs from x in $w^k \llbracket k, k+1 \rrbracket = (u, v)$.

Definition

A (ρ, M) MD under its invariant distribution is said to be Al by T on the line when Line_n \equiv 0, for all $n \in \mathbb{N}$.

$$\mathsf{Line}_{n}^{M,\mathsf{T}}(x) := \frac{\partial}{\partial t} \mu_{\llbracket 1,n \rrbracket}^{t}(x)$$
$$= \sum_{\substack{x_{-1},x_{0}, \\ x_{n+1},x_{n+2} \in E_{\kappa}}} \sum_{j=0}^{n} \sum_{(u,v) \in E_{\kappa}^{2}} \gamma(w^{j} \llbracket -1, n+2 \rrbracket) \mathsf{T}_{[u,v|x_{j},x_{j+1}]}$$

$$-\sum_{\substack{x_{-1},x_0,\\x_{n+1},x_{n+2}\in E_{\kappa}}}\sum_{j=0}^{n}\gamma(x\llbracket-1,n+2\rrbracket)\sum_{(u,v)\in E_{\kappa}^2}\mathsf{T}_{[x_j,x_{j+1}|u,v]}$$

where w^k differs from x in $w^k \llbracket k, k+1 \rrbracket = (u, v)$.

Definition

A (ρ, M) MD under its invariant distribution is said to be Al by T on the line when Line_n \equiv 0, for all $n \in \mathbb{N}$.

$$\operatorname{Line}_{n}^{M,\mathsf{T}}(x) := \frac{\partial}{\partial t} \mu_{\llbracket 1,n \rrbracket}^{t}(x)$$
$$= \sum_{\substack{x_{-1},x_{0}, \\ x_{n+1},x_{n+2} \in E_{\kappa}}} \sum_{j=0}^{n} \left(\sum_{(u,v) \in E_{\kappa}^{2}} \gamma(w^{j} \llbracket -1, n+2 \rrbracket) \mathsf{T}_{[u,v|x_{j},x_{j+1}]} -\gamma(x \llbracket -1, n+2 \rrbracket) \sum_{(u,v) \in E_{\kappa}^{2}} \mathsf{T}_{[x_{j},x_{j+1}|u,v]} \right)$$

where w^k differs from x in $w^k \llbracket k, k+1 \rrbracket = (u, v)$.

Definition

A (ρ, M) MD under its invariant distribution is said to be Al by T on the line when Line_n \equiv 0, for all $n \in \mathbb{N}$.

$$\mathsf{Line}_{n}^{M,\mathsf{T}}(x) := \frac{\partial}{\partial t} \mu_{[\![1,n]\!]}^{t}(x)$$

$$= \sum_{\substack{x_{-1},x_{0}, \\ x_{n+1},x_{n+2} \in E_{\kappa}}} \sum_{j=0}^{n} \left(\sum_{(u,v) \in E_{\kappa}^{2}} \left(\rho_{x_{-1}} \prod_{\substack{-1 \le k \le n+1 \\ k \notin \{j=1,j,j+1\}}} M_{x_{k},x_{k+1}} \right) M_{x_{j-1},u} M_{u,v} M_{v,x_{j+2}} \mathsf{T}_{[u,v|x_{j},x_{j+1}]} \right)$$

$$- \left(\rho_{x_{-1}} \prod_{k=-1}^{n+1} M_{x_{k},x_{k+1}} \right) \mathsf{T}_{[x_{j},x_{j+1}]}^{\mathsf{out}} \right)$$

Definition

A (ρ, M) MD is said to be invariant by T on the line when Line_n $\equiv 0$, for all $n \in \mathbb{N}$.

$$\mathsf{Line}_{n}^{M,\mathsf{T}}(x) := \frac{\partial}{\partial t} \mu_{[\![1,n]\!]}^{t}(x)$$

$$= \sum_{\substack{x_{-1}, x_{0}, \\ x_{n+1}, x_{n+2} \in E_{\kappa}}} \sum_{j=0}^{n} \left(\rho_{x_{-1}} \prod_{k=-1}^{n+1} M_{x_{k}, x_{k+1}} \right) \times \left(\left(\sum_{(u,v) \in E_{\kappa}^{2}} \mathsf{T}_{[u,v|x_{j}, x_{j+1}]} \frac{M_{x_{j-1}, u} M_{u,v} M_{v, x_{j+2}}}{M_{x_{j-1}, x_{j}} M_{x_{j}, x_{j+1}} M_{x_{j+1}, x_{j+2}}} \right) - \mathsf{T}_{[x_{j}, x_{j+1}]}^{\mathsf{out}} \right)$$

Definition

A (ρ, M) MD is said to be invariant by T on the line when Line_n $\equiv 0$, for all $n \in \mathbb{N}$.

$$\mathsf{Line}_{n}^{M,\mathsf{T}}(x) := \frac{\partial}{\partial t} \mu_{[\![1,n]\!]}^{t}(x)$$

$$= \sum_{\substack{x_{-1}, x_{0}, \\ x_{n+1}, x_{n+2} \in E_{\kappa}}} \sum_{j=0}^{n} \left(\rho_{x_{-1}} \prod_{k=-1}^{n+1} M_{x_{k}, x_{k+1}} \right) \times \underbrace{\left(\left(\sum_{(u,v) \in E_{\kappa}^{2}} \mathsf{T}_{[u,v|x_{j}, x_{j+1}]} \frac{M_{x_{j-1}, u} M_{u,v} M_{v, x_{j+2}}}{M_{x_{j-1}, x_{j}} M_{x_{j}, x_{j+1}} M_{x_{j+1}, x_{j+2}}} \right) - \mathsf{T}_{[x_{j}, x_{j+1}]}^{\text{out}} \right)}_{Z_{x_{j-1}, x_{j}, x_{j+1}, x_{j+2}}} \right) - \mathsf{T}_{[x_{j}, x_{j+1}]}^{\text{out}}$$

Definition

A (ρ, M) MD is said to be invariant by T on the line when Line_n $\equiv 0$, for all $n \in \mathbb{N}$.

Definitions

• Define for every $a, b, c, d \in E_{\kappa}$

$$Z_{a,b,c,d}^{M,\mathsf{T}} := \left(\sum_{(u,v)\in E_{\kappa}^{2}} \mathsf{T}_{[u,v|b,c]} \frac{M_{a,u}M_{u,v}M_{v,d}}{M_{a,b}M_{b,c}M_{c,d}} \right) - \mathsf{T}_{[b,c]}^{\mathsf{out}}.$$

Definition

A Gibbs measure with kernel M is said to be invariant by T on $\mathbb{Z}/n\mathbb{Z}$ when Cycle_n \equiv 0, where

$$\mathsf{Cycle}_n(x)$$

$$:= \sum_{j=0}^{n-1} \sum_{u,v \in E_{\kappa}} \left(\nu(w^j) \mathsf{T}_{[u,v|x_j,x_{j+1 \, \mathrm{mod} \, n}]} - \nu(x) \mathsf{T}_{[x_j,x_{j+1 \, \mathrm{mod} \, n}]}^{\mathsf{out}} \right)$$

where w^k differs from x in $w^k \llbracket k, k+1 \mod n \rrbracket = (u, v)$.

Definition

 $Cycle_n(x)$

A Gibbs measure with kernel M is said to be invariant by T on $\mathbb{Z}/n\mathbb{Z}$ when Cycle_n \equiv 0, where

$$:= \qquad \nu(x) \times \sum_{j=0}^{n-1} Z_{x_{j-1},x_j,x_{j+1},x_{j+2}}$$

where w^k differs from x in $w^k \llbracket k, k+1 \mod n \rrbracket = (u, v)$.

Extensions

Memory and amplitude

Theorem 1 (F- Marckert)

Let E_{κ} be finite, L = 2, m = 1. If M > 0 then the following statements are equivalent:

- (ρ, M) is invariant by T on \mathbb{Z} .
- G(M) is invariant by T on $\mathbb{Z}/n\mathbb{Z}$, for all $n \geq 3$
- G(M) is invariant by T on $\mathbb{Z}/7\mathbb{Z}$
- A finite system of equations of degree 7 in *M* and linear in *T*.

Theorem 1- Strongest form (F- Marckert '17)

Let E_{κ} be finite, $L \ge 2$, $m \in \mathbb{N}$. If M > 0 then the following statements are equivalent:

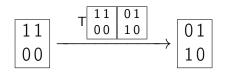
- (ρ, M) is invariant by T on \mathbb{Z} .
- G(M) is invariant by T on $\mathbb{Z}/n\mathbb{Z}$, for all $n \ge m + L$
- G(M) is invariant by T on $\mathbb{Z}/h\mathbb{Z}$
- A finite system of equations of degree *h* in *M* and linear in *T*.

h:=4m+2L-1

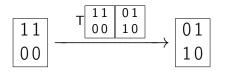
• Theorem 1 when $\kappa = \infty$.

- Theorem 1 when $\kappa = \infty$.
- I.I.D. invariant measures on \mathbb{Z}^d .

- Theorem 1 when $\kappa = \infty$.
- I.I.D. invariant measures on \mathbb{Z}^d .

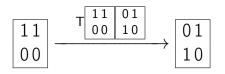


- Theorem 1 when $\kappa = \infty$.
- I.I.D. invariant measures on \mathbb{Z}^d .



• We link our results with the TASEP's matrix ansatz.

- Theorem 1 when $\kappa = \infty$.
- I.I.D. invariant measures on \mathbb{Z}^d .



We link our results with the TASEP's matrix ansatz.
Problem: MK with zero entries.

Applications

Theorem 3 (F.- Marckert '17)

Consider $\kappa < \infty$. Consider an IRM T with amplitude L, which is not identically 0.

If for infinitely many integers *n* the IPS with IRM T possesses an absorbing subset S_n of $E_{\kappa}^{\mathbb{Z}/n\mathbb{Z}}$, with $\varnothing \subsetneq S_n \subsetneq E_{\kappa}^{\mathbb{Z}/n\mathbb{Z}}$. Then, there does not exist any MD with any memory *m* with full support, invariant by T on the line.

Theorem 3 (F.- Marckert '17)

Consider $\kappa < \infty$. Consider an IRM T with amplitude L, which is not identically 0.

If for infinitely many integers *n* the IPS with IRM T possesses an absorbing subset S_n of $E_{\kappa}^{\mathbb{Z}/n\mathbb{Z}}$, with $\varnothing \subsetneq S_n \subsetneq E_{\kappa}^{\mathbb{Z}/n\mathbb{Z}}$. Then, there does not exist any MD with any memory *m* with full support, invariant by T on the line.

Corollary

The contact process do not have a MD of any memory $m \ge 0$ as invariant distribution.

• The case $\kappa = 2$, m = 1 and L = 2 is totally explicitly solved.

- The case $\kappa = 2$, m = 1 and L = 2 is totally explicitly solved.
- For $\kappa < \infty$, L = 2 and m = 1 we have an algorithm to find the set of all possible M MK which are invariant for a given T.

- The case $\kappa = 2$, m = 1 and L = 2 is totally explicitly solved.
- For $\kappa < \infty$, L = 2 and m = 1 we have an algorithm to find the set of all possible M MK which are invariant for a given T.
- Examples of I.I.D. invariant measures on \mathbb{Z}^2 .

- The case $\kappa = 2$, m = 1 and L = 2 is totally explicitly solved.
- For $\kappa < \infty$, L = 2 and m = 1 we have an algorithm to find the set of all possible M MK which are invariant for a given T.
- Examples of I.I.D. invariant measures on \mathbb{Z}^2 .
- Zero range, voter model, etc. Also when we make mild changes on these models we have some results.

- The case $\kappa = 2$, m = 1 and L = 2 is totally explicitly solved.
- For $\kappa < \infty$, L = 2 and m = 1 we have an algorithm to find the set of all possible M MK which are invariant for a given T.
- Examples of I.I.D. invariant measures on \mathbb{Z}^2 .
- Zero range, voter model, etc. Also when we make mild changes on these models we have some results.
- We find an IRM T which possesses some hidden Markov chain as invariant distributions. It is done using a projection from E₃ to E₂.

Thank you!