
VII Summer School in Probabilities Luis Fredes
and Stochastic Processes (CMM) U-Bordeaux

Heaps of Pieces and Applications to Probability Theory

Contents
0 Introduction 1

1 Combinatorics 1
1.1 Generating function . 1
1.2 Heaps . 3

2 Probabilities 5
2.1 The quantity det

(
Id−𝑀 (𝑟)

)
is a central object in probability; 5

2.1.1 Heap of cycles with weights given by a Markov Chain 5
2.1.2 Matrix tree theorem. 6
2.1.3 Reversibility . 7
2.1.4 Invariant measure . 8

3 Results 8
3.1 Kemeny’s constant . 8
3.2 Upper directed random walks on trees . 11
January 8, 2025

0 Introduction
The main objective of this course is to convince you of two facts :

• Generating (weighted) functions help to condense the combinatorial information of a class of ob-
jects by means of a function. Derivating it gives combinatorial countings, in the case where weights
are equal for objects of the same size, and for probabilistic purposes we will be motivated to work
with weights that represent probabilities for the objects.

• The quantity det(𝐼𝑑 − 𝑀 {𝑟 }) is a central object in probability : we will present this quantity as
the weighted alternating counting of heap of cycles, an identity coming from “reversibility” that
let us change 𝑀 by a reversibility kernel, as the counting of weighted trees at rooted 𝑟 and as one
invariant measure for𝑀 . Finally we will present different examples where combinatorial identities
and det(𝐼𝑑 −𝑀 {𝑟 }) are key steps for probabilistic purposes.

1 Combinatorics

1.1 Generating function
Definition 1. Consider a class A and a size function ℓ : A→ N, the formal generating funcionA of A is
given by

A(𝑥) =
∑︁
𝑎∈A

𝑥 ℓ (𝑎) =
∞∑︁
𝑛=1

𝐴𝑛𝑥
𝑛

where 𝐴𝑛 is the number of elements of size 𝑛 in A.

1

This kind functions have a lot of good properties when the class 𝐴 is a regular language for the size
function counting the number of letters in a word or where the objects can be described by an iterative
procedure mixing sizes of the objects into play.

Example 1. The class 𝐷 of Dyck paths are paths only taking steps in {−1, 1} starting and ending at 0 and
staying positive all along the trajectory. We defineD(𝑥) the generating function of Dyck paths with size
funcion the half of the steps. Notice that a path of size 𝑛 can be decompose as an upstep continued by
a Dyck path, then a downstep and finally a dyck path again. If 𝑛 = 0 this decomposition is not valid so
we have to treat it separately, but notice that 𝐷0 = 1. This let us stablish the following formula for D the
generating function of Dyck paths according to size

𝑥𝑛𝐷𝑛 =

𝑛−1∑︁
𝑘=0

𝑥 1/2 · 𝑥𝑘𝐷𝑘 · 𝑥 1/2 · 𝑥𝑛−1−𝑘𝐷𝑛−1−𝑘

D(𝑥) = 𝑥D(𝑥)2 + 1

whose solution is given by

D(𝑥) = 1 −
√

1 − 4𝑥
2𝑥 = 1 + 𝑥 + 2𝑥2 + 5𝑥3 + 14𝑥4 + 42𝑥5 + 132𝑥6 +𝑂 (𝑥7)

Here we discarded the solution with + since we look for the sign that gives an expansion where the
coefficients are natural numbers, i.e. such that𝐷𝑛 counts the number of elements of size𝑛. This generating
function converges when |𝑥 | < 1/4, where 𝐷𝑛 the number of Dyck paths of length 2𝑛 is given by the
famous Catalan numbers

𝐷𝑛 =
1

𝑛 + 1

(
2𝑛
𝑛

)
For probabilistic purposes, we consider the following generalization of a generating function, called

theWeighted Generating Function

Definition 2. Consider a class A together with a weight function𝑊 : 𝐴 → R, the weighted generating
function A of A is given by

A(𝑊) =
∑︁
𝑎∈A

𝑊 (𝑎)

We will revisit this example

Example 2. Consider an unoriented graph 𝐺 = (𝑉 , 𝐸), a rooted tree 𝑡 of 𝐺 is a subgraph with a marked
vertex such that there exists a unique path for each pair of poins (this is equivalent to being connected and
with no cycles). A rooted spanning tree of𝐺 is a rooted tree containing all the vertices of𝐺 . When a tree
𝑡 is rooted at 𝑟 one can associate canonical orientation ®𝑡 : orient the edges of the tree in the direction that
points towards 𝑟 the root. Consider ST(𝐺, 𝑟) the set of rooted spanning trees of𝐺 rooted at 𝑟 . Consider a
weight function𝑊 : ∪𝑟 ∈𝑉 (𝐺)ST(𝐺, 𝑟) → R for 𝑡 ∈ ST(𝐺, 𝑟) as follows

𝑊 (𝑡, 𝑟) =
∏

®𝑒=(𝑒1,𝑒2) ∈®𝑡

𝐾®𝑒

For 𝐾 : 𝐸 → R an edge weight function (a matrix of size |𝑉 | × |𝑉 |). This gives a weighted generating
function 𝑆𝐺

𝑆𝐺 (𝐾 ; 𝑟) =
∑︁

𝑡 ∈𝑇 (𝐺,𝑟)
𝑊 (𝑡, 𝑟)

Here the variable 𝑥 has a value depending on each oriented edge, this is 𝐾𝑒 .

2

1.2 Heaps
A heap of pieces is, informally, a collection of pieces, that are placed on a discrete space (B × N, where
B is a set of elements, and N is the height space). The definition uses a reflexive and symmetric relation
R on the set of pieces B. Some pieces are said to be in relation, which implies that they cannot be placed
at the same height (if 𝑝R𝑝′, then (𝑝, 𝑖) and (𝑝′, 𝑖) cannot belong to the same heap); moreover, a piece 𝑝
at height 𝑖 with 𝑖 ≥ 1 must be supported by a piece 𝑝 at height 𝑖 − 1, which is related to it (that is, if (𝑝, 𝑖)
is in a heap 𝐻 and 𝑖 ≥ 1, then 𝐻 must contain (𝑝′, 𝑖 − 1) with 𝑝′R𝑝).

a b c d e

Figure 1: An example of heap of pieces.

Definition 3 (Geometric Viennot [Vie86]). A heaps of pieces 𝐻 is a finite sets of pairs {(𝑝, 𝑖) : 𝑝 ∈ B, 𝑖 ∈
N}, such that

1. If (𝑝, 𝑖), (𝑝′, 𝑗) ∈ 𝐻 and 𝑝R𝑝′, then 𝑖 ≠ 𝑗 (pieces in relation cannot be put at the same height).

2. If (𝑝, 𝑖) ∈ 𝐻 and 𝑖 > 0, then there exists (𝑝′, 𝑖 − 1) ∈ 𝐻 with 𝑝R𝑝′ (each piece must be supported).

There are alternative ways to define formally the notion of heap of pieces:

• As a Partially Commutative Monoid (Viennot [Vie86], Krattenthaler [Kra06]).

• And as a set where each Heap can be viewed as a Partially Ordered Set (POSET).

We will stick to the geometric point of view in what follows.

Definition 4. A trivial heap of pieces is a heap in which all the pieces are at level 0, i.e. the pieces it
contains are not in relation.

Definition 5. A piece (𝑝, 𝑖) in 𝐻 is said to be maximal in 𝐻 , if 𝐻 does not contain any pair (𝑝′, 𝑗) such
that 𝑝′R𝑝 and 𝑗 ≥ 𝑖 , i.e. there are no pieces in relation, above it.

a b c d e a b c d e

maximal pieces

Figure 2: Left: Trivial heap of pieces 𝑇 . Right: Heap of pieces 𝐻 with maximal pieces marked.

Theorem 1. [Prop.5.3 [Vie86]] LetM be a subset of the pieces B. Let𝑊 be a multiplicative weight function
on heaps, such that for all heap 𝐻 its weight𝑊 (𝐻) is the product of the elementary weights𝑊 (𝑝) of the
pairs (𝑝, 𝑖) it contains (the weight of a piece is independent of “its place or height” in the heap). Then, the
total weight of the heap of pieces having their maximal pieces included inM is given by∑︁

𝐻 heaps in (B,R)
maximal pieces⊂M

𝑊 (𝐻) =
(∑︁

𝑇 trivial
heap in (B,R)

(−1) |𝑇 |𝑊 (𝑇)
)−1 (∑︁

𝑇 trivial
heap in (B\M,R)

(−1) |𝑇 |𝑊 (𝑇)
)
,

where |𝐻 | denotes the number of pieces in the heap 𝐻 .

3

Viennot [Vie86, Proposition 5.3] gave this result at the level of combinatorial objects; here, we pre-
ferred a projected version, in terms of their weights (which is what we need). (See also Theorem 4.1
[Kra06]).

Proof. The statement is equivalent to∑︁
𝐻 heaps in (B,R)

maximal pieces⊂M

∑︁
𝑇 trivial

heap in (B,R)

(−1) |𝑇 |𝑊 (𝐻) ×𝑊 (𝑇) =
(∑︁

𝑇 trivial
heap in (B\M,R)

(−1) |𝑇 |𝑊 (𝑇)
)

(1)

And notice that the term (−1) |𝑇 |𝑊 (𝐻) ×𝑊 (𝑇) = (−1) |𝑇 |𝑊 (𝑇 ◦𝐻), for𝑇 ◦𝐻 denoting the heap obtained
by putting 𝐻 on top of 𝑇 and then letting fall the pieces that are not supported.

a b c d e a b c d e a b c d e

Figure 3: Left and middle: Putting 𝐻 (dark blue) on top of 𝑇 (green) at letting the pieces fall. Right: the
full transformation𝑇 ◦𝐻 after letting fall the pieces of 𝐻 maximal pieces in red and minimal piece (with
respect to the total order in B) 𝑏 supported a maximal piece onM in green .

The idea of the proof will be to consider pairs of heaps (𝐻,𝑇) and (𝐻 ′,𝑇 ′) such that 𝐻 ◦𝑇 = 𝐻 ′ ◦𝑇 ′
and such that (−1) |𝑇 |𝑊 (𝑇 ◦ 𝐻) = −(−1) |𝑇 ′ |𝑊 (𝑇 ′ ◦ 𝐻 ′). We will obtain this with an involution.

We start by considering a total order of the pieces in B and we denote by 𝑏 the piece which is minimal
w.r.t. the total order in B which is contained in𝑇 ◦𝐻 and at level 1 such that it supports a maximal piece
onM. From (𝐻,𝑇) we form a new pair (𝐻 ′,𝑇 ′) as follows :

1. if 𝑏 ∈ 𝑇 , we set 𝑇 ′ =𝑇 \ {𝑏} and 𝐻 ′ = 𝑏 ◦ 𝐻 .

2. if 𝑏 ∉ 𝑇 , then 𝑇 ′ =𝑇 ◦ 𝑏 and 𝐻 ′ = 𝐻 \ 𝑏.

a b c d e a b c d e

Figure 4: Left: 𝑇 ◦ 𝐻 with 𝑇 in green and 𝐻 in dark blue. Right: 𝑇 ′ ◦ 𝐻 ′ with 𝑇 ′ in green and 𝐻 ′ in dark
blue .

Notice that𝑇 ◦𝐻 =𝑇 ′ ◦𝐻 ′ and that (−1) |𝑇 |𝑊 (𝑇 ◦𝐻) = −(−1) |𝑇 ′ |𝑊 (𝑇 ′ ◦𝐻 ′), moreover this transfor-
mation is an involution, meaning that applying it twice gives the identity, i.e. 𝐻 ′′ = 𝐻 and 𝑇 ′′ =𝑇 .

Now it remains to retrieve the elements that survive, since the weight associated to 𝑇 ◦ 𝐻 cancels
out in the left hand side of equation (1) with the weight associated to 𝑇 ′ ◦ 𝐻 ′. To see this notice that our
transformation works as soon as 𝑇 ◦ 𝐻 contains a maximal piece in 𝑀 , therefore the elements resisting
the transformation are such that 𝑇 ◦ 𝐻 does not have any maximal piece inM, but this forces 𝐻 to be
the empty heap and 𝑇 to have only pieces belonging to B \M, since all the pieces in a trivial heap are
maximal. This gives the right hand side of equation (1). □

Corollary 1. Let𝑊 be a multiplicative weight function on heaps, such that for all heap𝐻 its weight𝑊 (𝐻) is
the product of the elementary weights𝑊 (𝑝) of the pairs (𝑝, 𝑖) it contains (the weight of a piece is independent

4

of “its place or height” in the heap). Then, the total weight of the heap of pieces is given by∑︁
𝐻 heaps in (B,R)

𝑊 (𝐻) =
(∑︁

𝑇 trivial
heap in (B,R)

(−1) |𝑇 |𝑊 (𝑇)
)−1
,

where |𝐻 | denotes the number of pieces in the heap 𝐻 .

Example 3. For B = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒} as in the example (meaning that we use the relation imposed there)
with weight function given by𝑊 (𝐻) = 𝑥 |𝐻 | . Which is the total weight of all possible heap of pieces?
From the precedent corollary one has that the total mass is given by the alternating mass of trivial heaps,
this gives∑︁
𝐻 heaps in (B,R)

𝑊 (𝐻) = 1
1 − 5𝑥 + 6𝑥2 − 𝑥3 = 1+5𝑥+19𝑥2+66𝑥3+221𝑥4+728𝑥5+2380𝑥6+7753𝑥7+25213𝑥8+𝑂 (𝑥9)

Since there are 1 heap with no pieces, 5 with one piece, 6 with two pieces and 1 with three pieces.

2 Probabilities

2.1 The quantity det
(
Id−𝑀 (𝑟)

)
is a central object in probability;

The quantity det
(
Id−𝑀 (𝑟)

)
is the partition function of the family of weighted spanning trees rooted at

𝑟 , but not only. It will appear under the following forms in what follows.

2.1.1 Heap of cycles with weights given by a Markov Chain

In a heap of cycles, the pieces are oriented cycles on a given graph 𝐺 , and two cycles are in relation if
they share a vertex. We consider the weight of an oriented cycle 𝐶 as the transitions following 𝑀 over
the directed edges it contains, i.e.

𝑊 (®𝐶) =
∏
®𝑒∈𝐶

𝑀®𝑒 ;

and the weight of a heap of cycles is the weight of the collection of cycles it contains. A heap of cycles is
then trivial when all the cycles it contains are non-intersecting. Denote by 𝐴𝐺 the alternating weight of
trivial heaps of cycles

𝐴𝐺 =
∑︁

𝐶=(𝐶 (1),· · · ,𝐶 (|𝐶 |) ∈Trivial heap of cycles on 𝐺

(−1) |𝐶 |
|𝐶 |∏
𝑗=1

Weight(𝐶 (𝑗)),

The counting of trivial heap of cycles can be easily be obtained thank to the interpretation using per-
mutations, since a permutation 𝜎 over a set of vertices can be seen as a collection of non intersecting
cycles 𝐶 defined as 𝐶 = {(𝑣, 𝜎 (𝑣)) : 𝑣 ∈ 𝑉 } this interpretation gives for cycles of length bigger than 1 (no
self-loops) that

(−1) |𝐶 |
|𝐶 |∏
𝑗=1

Weight(𝐶 (𝑗)) = sgn(𝜎)
∏
𝑣∈𝑉
(−𝑀𝑣,𝜎 (𝑣))

This follows since the signature of an even cycle is −1 and the signature of an odd cycle is +1; meaning
that sgn(𝜎) = (−1)even cycles of 𝜎 , but when considering −𝑀®𝑒 instead of 𝑀®𝑒 gives to each odd cycle a total
weight of −1, giving finally that sgn(𝜎) = (−1) |𝐶 | . While for cycles of length 1 one should impose a
diagonal term equals to (1 −𝑀𝑖,𝑖) since it counts : with weight −𝑀𝑖,𝑖 when the cycle (loop of vertex 𝑖) is
present in the collection and 1 when it is not. From this interpretation we deduce that

𝐴𝐺 = det (Id−𝑀) = 0,

5

since𝑀 has 1 as eigenvalue; hence the set of heaps of cycles on𝐺 has total weight +∞. What is of greater
interest is the value of𝐴𝐺\𝑆 , the alternating weight of trivial heaps of cycles avoiding some set of vertices
𝑆 , which is

𝐴𝐺\𝑆 = det
(
Id−𝑀 {𝑆 }

)
, (2)

as well as its inverse corresponding to the total weight of heaps of cycles on 𝐺 \ 𝑆 :∑︁
𝐻 ∈Heap of Cycles on 𝐺\𝑆

Weight(𝐻) = det
(
Id−𝑀 {𝑆 }

)−1
. (3)

2.1.2 Matrix tree theorem.

Recall that for a rooted tree (𝑡, 𝑟) we set the weight as

𝑊 (𝑡, 𝑟) =
∏

®𝑒=(𝑒1,𝑒2) ∈®𝑡

𝐾®𝑒

For 𝐾 : 𝐸 → R an edge weight function (a matrix of size |𝑉 | × |𝑉 |).

Theorem 2 (Matrix Tree Theorem). ∑︁
𝑡 ∈𝑇 (𝐺,𝑟)

𝑊 (𝑡, 𝑟) = det((𝐷 − 𝐾) {𝑟 })

Where 𝐷 is the diagonal matrix with diagonal values equal to the sum of the line of 𝐾 and where (𝐷 −𝐾) {𝑟 }
is the matrix (𝐷 − 𝐾) without the line and column associated to 𝑟 .

The Matrix 𝐷 − 𝐾 is called a Laplacian matrix since it gives information about the flow of a vertex.
More formally

((𝐷 − 𝐾)𝑥)𝑢 = 𝐷𝑢,𝑢𝑥𝑢 −
∑︁
𝑣∈𝑉

𝐾𝑢,𝑣𝑥𝑣 =
∑︁
𝑣∈𝑉

𝐾𝑢,𝑣 (𝑥𝑢 − 𝑥𝑣)

Imposing this equals to 0 says that the flow in and the flow out compensate.

Proof. For this proof we borrow the argument in Zeilberger [Zei85, Section 4]. Observe that

𝐷 − 𝐾 {𝑟 } =
[(∑

𝑣′∈𝑉 𝐾𝑢,𝑣′
)
1(𝑢=𝑣) − 𝐾𝑢,𝑣

]
(𝑢,𝑣) ∈ (𝑉 \{𝑟 })2 . (4)

Denote by B the set of pairs (𝐵,𝐶) such that:
• 𝐵 is a directed graph on 𝑉 , where each vertex of 𝑉 \ {𝑟 } has either 0 or 1 outgoing edge ending in 𝑉
(including {𝑟 } this time). Denote by 𝑉𝐵 the set of vertices from which there is one outgoing edge.
• 𝐶 is a collection of directed disjoint cycles on 𝑉𝐶 = (𝑉 \ {𝑟 }) \𝑉𝐵 .

Set Weight(𝐵) :=
∏

𝑢∈𝑉𝐵 𝐾𝑢,𝑡 (𝑢) where 𝑡 (𝑢) is the target of the edge starting at 𝑢 and Weight(𝐶) :=
(−1) |𝐶 |∏®𝑐 cycles of C

∏
®𝑒∈®𝑐 𝐾®𝑒 the product of the weight of edges along the directed cycles of 𝐶 and finally

defineWeight(𝐵,𝐶) :=Weight(𝐵)Weight(𝐶).
Claim: Weight(B) :=

∑
(𝐵,𝐶) ∈BWeight(𝐵,𝐶) = det(𝐷 − 𝐾 (𝑟)).

Proof of the claim : first, expand det(𝐷 − 𝐾 (𝑟)) using Leibniz formula:

det(𝐷 − 𝐾 (𝑟)) =
∑︁

(−1)sign(𝜎)︸ ︷︷ ︸
(−1) |even cycles of 𝜎 |

∏
𝑖≠𝑟

(𝐷 − 𝐾 (𝑟))𝑖,𝜎 (𝑖) ,

where the sum range on all permutations 𝜎 on 𝑉 \ {𝑟 }. Now, consider the set 𝐹 (𝜎) = {𝑖 : 𝜎 (𝑖) = 𝑖} of fix
points of 𝜎 , and rewrite:∏

𝑖≠𝑟

(𝐷 − 𝐾 (𝑟))𝑖,𝜎 (𝑖) =
©«

∏
𝑖∈𝐹 (𝜎)

(
−𝐾𝑖,𝑖 +

∑︁
𝑗∈𝑉

𝐾𝑖, 𝑗

)ª®¬ ©«
∏

𝑖∈𝑉 \({𝑟 }∪𝐹 (𝜎))
−𝐾𝑖,𝜎 (𝑖)

ª®¬ .
6

The second parenthesis can be interpreted as the weight of cycles of 𝜎 with lengths at least 2. Now expand
the first parenthesis (without simplifying the diagonal term). This first parenthesis can be rewritten as a
sum over 𝐴 ⊂ 𝐹 (𝜎) as follows:

∏
𝑖∈𝐹 (𝜎)

(
−𝐾𝑖,𝑖 +

∑︁
𝑗∈𝑉

𝐾𝑖, 𝑗

)
=

∑︁
𝐴⊂𝐹 (𝜎)

(∏
𝑖∈𝐴
(−𝐾𝑖,𝑖)

) ©«
∏

𝑖∈𝐹 (𝜎)\𝐴

∑︁
𝑗

𝐾𝑖, 𝑗
ª®¬ .

Each factor −𝐾𝑖,𝑖 can be seen to be the weight of a loop over 𝑖 (that is a cycle of size 1), and by expan-
sion,

∏
𝑖∈𝐹 (𝜎)\𝐴

∑
𝑗∈𝑉 𝐾𝑖, 𝑗 can be interpreted as the sum of weights of directed graph where each vertex of

𝐹 (𝜎) \𝐴 has a single outgoing edge, ending on any vertex of𝑉 \ {𝐴}. This ends the argument explaining
whyWeight(B) = det(𝐷 − 𝐾 (𝑟)).

Now we return to the proof of the matrix tree theorem.
We show now that Weight(B) = ∑

(𝑡,𝑟) ∈T(𝐺,𝑟)
∏
®𝑒∈®𝑡 𝐾®𝑒 . The graphs “𝐵” are made of cycles and trees,

and 𝐶 is made of cycles. For any pair (𝐵,𝐶) having (totally) at least one cycle one can define (𝐵′,𝐶′) as
follows: for a total order on the set of oriented cycles, take the greatest cycle 𝑐 in the union of 𝐵 and 𝐶 .
Denote by (𝐵′,𝐶′) the pair obtained by moving 𝑐 from the component containing it to the other. This
map (𝐵,𝐶) → (𝐵′,𝐶′) is clearly an involution and satisfies Weight(𝐵′,𝐶′) = −Weight(𝐵,𝐶). Hence,
Weight(B) coincides with the sum of the Weight(𝐵,𝐶) taken on the set of pairs (𝐵,𝐶) which have no
cycles: 𝐶 is empty, and the graph 𝐵 has no cycle, and since its number of edges is one less than its number
of vertices, it is a spanning tree. □

In the case where 𝐾 is a transition matrix𝑀 , one has that the previous theorem takes the form of∑︁
𝑡 ∈𝑇 (𝐺,𝑟)

𝑊 (𝑡, 𝑟) = det((Id−𝑀) {𝑟 })

2.1.3 Reversibility

Consider 𝑀 and 𝜌 one invariant measure of it. We denote by←−𝑀 the reversibility Kernel of the transition
matrix𝑀 , which is defined as

←−
𝑀𝑖, 𝑗 =

𝜌 𝑗

𝜌𝑖
𝑀 𝑗,𝑖 .

By considering the involution that changes the orientation of every cycle one gets

det(Id−𝑀 (𝑟)) = det(Id−←−𝑀 (𝑟))

Remark 1. For this formula, the presence of 𝜌 is an “illusion” : this can be seen from the description over
oriented cycles, since for an oriented cycle ®𝑐 = 𝑥0𝑥1𝑥2𝑥3 one has

←−
𝑀𝑥0,𝑥3

←−
𝑀𝑥3,𝑥2

←−
𝑀𝑥2,𝑥1

←−
𝑀𝑥1,𝑥0 =

𝜌𝑥3

𝜌𝑥0

𝜌𝑥2

𝜌𝑥3

𝜌𝑥2

𝜌𝑥1

𝜌𝑥1

𝜌𝑥0︸ ︷︷ ︸
=1

𝑀𝑥0,𝑥1𝑀𝑥1,𝑥2𝑀𝑥2,𝑥3𝑀𝑥3,𝑥0

So that we can always use the constant measure which is always invariant for any transition Matrix,
since the sum of rows is equal to 1.

Therefore for a fixed 𝑟 ∈ 𝑉 ∑︁
(𝑡,𝑟) ∈𝑇 (𝐺

∏
®𝑒∈®𝑡

𝑀𝑒 =
∑︁

(𝑡,𝑟) ∈𝑇 (𝐺)

∏
®𝑒∈®𝑡

←−
𝑀𝑒 .

Even though the terms associated to each tree (𝑡, 𝑟) may be different, these sums are equal.

7

2.1.4 Invariant measure

An invariant measure 𝜌 of the Markov kernels𝑀 and←−𝑀 is related to these quantities by:

𝜌 (𝑤) = Const. det(Id−𝑀 (𝑤)) = Const. det(Id−←−𝑀 (𝑤)) (5)

so that, from the matrix tree theorem, this provides a connection between 𝜌𝑤 and the total mass of span-
ning trees rooted at𝑤 . To prove (5), there are several methods, direct arguments exist, but we will present
one for the irreducible case using Aldous-Broder theorem.

A path is a sequence of vertices𝑤 = (𝑤𝑘 , 0 ≤ 𝑘 ≤𝑚), with the property that {𝑤𝑘 ,𝑤𝑘+1} ∈ 𝐸 for every
𝑘 . This path is said to be covering if it visits all the vertices and if𝑚 is the first time with this property.
More formally, for every 1 ≤ 𝑘 ≤ |𝑉 | define

𝜏𝑘 (𝑤) = inf{ 𝑗, |{𝑤0, · · · ,𝑤 𝑗 }| = 𝑘}, 1 ≤ 𝑘 ≤ |𝑉 |,

the first time the path has visited 𝑘 different points (we write 𝜏𝑘 instead of 𝜏𝑘 (𝑤) when it is clear from
the context). The path𝑤 is then called covering if 𝜏 |𝑉 | (𝑤) =𝑚.

Denote by ST(𝐺) the set of spanning trees 𝑡 of𝐺 , and by ST• (𝐺) the set of rooted spanning trees (𝑡, 𝑟),
where 𝑟 , the root, is a distinguished vertex of 𝑉 .

Definition 6. For a covering path𝑤 , denote by FE(𝑤) (First entrance tree of𝑤) the rooted spanning tree
(𝑡,𝑤0) whose |𝑉 | − 1 edges are (𝑤𝜏𝑘 ,𝑤𝜏𝑘−1) (that is oriented towards the root𝑤0) for 2 ≤ 𝑘 ≤ 𝜏 |𝑉 | .

In simple words, we start a walk at𝑤0 and each time a new vertex is discovered we add the edge used
to discover it to the current tree (it is connected) pointing towards𝑤0 and we stop the walk the first time
every vertex has been visited.

Theorem 3. [Aldous–Broder reversible case [FM23] and [HLT21]] Let𝑊 be a Markov chain with irreducible
kernel𝑀 and invariant distribution 𝜌 . Then, for any (𝑡, 𝑟) ∈ ST• (𝐺)

P
[
FE

(
(𝑊0, · · · ,𝑊𝜏 |𝑉 |

)
= (𝑡, 𝑟) |𝑊0 = 𝑟

]
= Const.

∏
®𝑒∈®𝑡

←−
𝑀 ®𝑒

 /𝜌 (𝑟). (6)

This theorem was originally proved by Aldous [Ald90] and Broder [Bro89] independently for the re-
versible case.

Summing over all possible trees one obtains that

𝜌 (𝑤) = Const.

∑︁

𝑡 ∈ST(𝐺,𝑤)

∏
®𝑒∈®𝑡

←−
𝑀𝑒

 = Const. det(Id−←−𝑀 (𝑤)) = Const. det(Id−𝑀 (𝑤))

3 Results

3.1 Kemeny’s constant
Consider a Markov chain 𝑌 following𝑀 an irreducible transition matrix. The following result motivates
a work in progress

Theorem 4 (Kemeny’s Theorem). Let 𝑀 be an irreducible transition matrix in finite state space. The
following quantity is constant

𝐾 = 𝐾𝑖 = E𝑖 (𝜏+𝑋) =
∑︁
𝑗

E𝑖 (𝜏+𝑗)𝜋 𝑗 ,∀𝑖

where 𝜏+𝑗 = inf{𝑘 > 0 : 𝑌𝑘 = 𝑗} and the r.v. 𝑋 is distributed according to 𝜋 the invariant measure of𝑀 .

8

This idea came from the fact that usually when working with generating functions

𝐴(𝑥) =
∑︁
𝑘∈N

𝑎𝑘𝑥
𝑘 =⇒ 𝑑

𝑑𝑥
𝐴(𝑥)

���
𝑥=1

=
∑︁
𝑘∈N

𝑘𝑎𝑘𝑥
𝑘−1

���
𝑥=1

=
∑︁
𝑘∈N

𝑘𝑎𝑘

and this can be seen as the expectation of the length when taking the derivative evaluated at 𝑥 = 1 for 𝑎𝑘
probabilities associated to objects of size 𝑘 .

We know that 𝜋 𝑗 = 𝐶 det(𝐼 − 𝑀 { 𝑗 }), where 𝐶 is the renormalisation constant; therefore, Kemeny’s
constant can be obtained as :

𝐾𝑖 =
∑︁
𝑗

E𝑖 (𝜏+𝑗)𝜋 𝑗

=
∑︁
𝑗

E𝑖 (𝜏+𝑗) det(𝐼 −𝑀 { 𝑗 })

=𝐶
∑︁
𝑗

∑︁
ℓ≠𝑗

∞∑︁
𝑘=0
(𝑘 + 1)

(
�̃� (𝑗)

)𝑘
𝑖,ℓ
𝑀ℓ, 𝑗 det(𝐼 −𝑀 { 𝑗 })

=𝐶
𝑑

𝑑𝑥

(∑︁
𝑗

∑︁
ℓ

∞∑︁
𝑘=0

(
𝑥�̃� (𝑗)

)𝑘
𝑖,ℓ
𝑥𝑀ℓ, 𝑗 det(𝐼 −𝑀 { 𝑗 })

) �����
𝑥=1

=𝐶
𝑑

𝑑𝑥

(∑︁
𝑗

∑︁
ℓ

(
𝐼 − 𝑥�̃� 𝑗

)−1
𝑥𝑀ℓ, 𝑗 det(𝐼 −𝑀 { 𝑗 })

) �����
𝑥=1

where �̃� (𝑗) is the matrix with zeroes on the lines and column associated to 𝑗 and
(
�̃� (𝑗)

)0
= 𝐼 . This is in

order to consider the possibility of reaching the state 𝑗 after one step when 𝑖 = 𝑗 .
Define

𝐺𝑖, 𝑗 (𝑥) =
∑︁
ℓ

∞∑︁
𝑘=0

(
𝑥𝑀 (𝑗)

)𝑘
𝑖,ℓ
𝑥𝑀ℓ, 𝑗 =

∑︁
ℓ≠𝑗

(Id−𝑥𝑀 (𝑗))−1
𝑖,ℓ 𝑥𝑀ℓ, 𝑗

𝜋 𝑗 (𝑥) =𝐶𝜌 𝑗 (𝑥) =𝐶 det(𝐼 − 𝑥𝑀 { 𝑗 })

K𝑖 (𝑥) =
∑︁
𝑗

𝐺𝑖, 𝑗 (𝑥)𝜋 𝑗 (𝑥)

Where in the last line to say that 𝜋 𝑗 (1) is the invariant probability and that 𝜌 (𝑥) does not take into account
the renormalisation. Kemeny’s constant rewrites as

𝐾 =𝐶
∑︁
𝑗

𝐺 ′𝑖, 𝑗 (1)𝜌 𝑗 (1)

Theorem 5 (F. and Marckert ’24+). The following generating series does not depend on 𝑖

K𝑖 (𝑥) =K(𝑥) =
𝑥

1 − 𝑥 det(𝐼 − 𝑥𝑀)

We call this series the Kemeny’s generating series.
This theorem does not directly imply Kemeny’s Theorem. We show that Kemeny’s theorem is a

corollary of Theorem 5 in some simple steps. The derivative of Kemeny’s series, which is independent of
𝑖 , gives

𝑑

𝑑𝑥
K(𝑥) =

∑︁
𝑗

𝐺 ′𝑖, 𝑗 (𝑥)𝜌 𝑗 (𝑥) +
∑︁
𝑗

𝐺𝑖, 𝑗 (𝑥)𝜌 𝑗 (𝑥)′

when evaluating at 𝑥 = 1 one obtains
𝑑

𝑑𝑥
K(𝑥)

���
𝑥=1

=
∑︁
𝑗

𝐺 ′𝑖, 𝑗 (1)𝜌 𝑗 (1)︸ ︷︷ ︸
𝐾
𝐶

+
∑︁
𝑗

𝐺𝑖, 𝑗 (1)︸ ︷︷ ︸
=1

𝜌 𝑗 (𝑥)′
���
𝑥=1

9

where𝐺𝑖, 𝑗 (1) = 1 he second summand does not depend on 𝑖 , since it mesures the probability of eventually
arriving at 𝑗 from 𝑖; this probability is equal to one by positive recurrence. We conclude by noticing that
the left hand side does not depend on 𝑖 by Theorem 5 and that the rightmost term of the right hand side
is independent of 𝑖 , implying Kemeny’s theorem.

Proof of Theorem 5. Notice that

det(𝐼 − 𝑥𝑀 (𝑗)) =
∑︁

Ctrivial heap of cycles
(−1)C

∏
𝑐∈C

𝑊 (𝑐)

can be seen as the alternating generating function of trivial heaps of cycles, where each cycle/piece has
weight according𝑊 (𝑐) = ∏

®𝑒∈𝑐 𝑥𝑀®𝑒 = 𝑥
|𝑐 |∏

®𝑒∈𝑐 𝑀®𝑒 , where |𝑐 | is the length of the cycle.
We start by noticing that from the definition of K𝑖 (𝑥) it consists on the sum over 𝑗 of pairs formed

by :

• A weighted path 𝑃 starting at 𝑖 and reaching for the first time 𝑗 at the last step, with weight equals
to 𝑥𝑀 for the transitions (from 𝐺𝑖, 𝑗 (𝑥)).

• A trivial heap of cycles 𝐶′ avoiding 𝑗 counted by the alternating series, i.e. each edge adds a −1
(from 𝜋 𝑗 (𝑥) = det(Id−𝑥𝑀 { 𝑗 })).

We interpret this as triplet :

• A self avoinding walk 𝑆 from 𝑖 to 𝑗 weighted according to 𝑥𝑀 .

• A heaps of cycles 𝐶 with maximal piece supported on 𝑆 .

• A trivial heap of cycles 𝐶′ avoiding 𝑗 counted by the alternating i.e. each edge adds a −1 (from
𝜋 𝑗 (𝑥) = det(Id−𝑥𝑀 { 𝑗 })).

We define as 𝑆𝐶𝐶𝑖, 𝑗 (𝑥) the generating function of the triplets (𝑆,𝐶,𝐶′).
We found in an analysis term by term of 𝑆𝐶𝐶𝑖, 𝑗 (𝑥), that the only terms resisting in this generating

function are the ones consisting of (𝑆,𝐶′′) where 𝑆 is as before and 𝐶′′ is an alternating heap of cycles
not supported on 𝑆 . We denote as 𝐻𝑖, 𝑗 (𝑥) the generating function of the tuples (𝑆,𝐶′′). We have that

𝑆𝐶𝐶𝑖, 𝑗 (𝑥) = 𝐻𝑖, 𝑗 (𝑥).

(This follows from an argument similar to the one used in the Matrix tree theorem)
We noticed that

det(𝐼 − 𝑥𝑀)𝐻𝑖, 𝑗 (𝑥)
det(𝐼 − 𝑥𝑀) = det(𝐼 − 𝑥𝑀)𝐼𝑖, 𝑗 (𝑥),

where 𝐼𝑖, 𝑗 (𝑥) is the generating function of all the paths from 𝑖 to 𝑗 according to the number of steps.
(This follows from an argument as in the theorem of the generating function of heaps with maximal

pieces in terms of trivial heaps)
From this result we obtain that∑︁

𝑗

det(𝐼 − 𝑥𝑀)𝐼𝑖, 𝑗 (𝑥) = det(𝐼 − 𝑥𝑀)
∑︁
𝑗

𝐼𝑖, 𝑗 (𝑥) = det(𝐼 − 𝑥𝑀)𝐴𝑖 (𝑥)

where𝐴𝑖 (𝑥) is the generating function of all the paths starting at 𝑖 of length at least one. We remarked that
𝐴𝑖 (𝑥) =

∑
𝑘≥1 𝑎𝑘𝑥

𝑘 has coefficients (𝑎𝑘) that are all equal to 1 : this follows since 𝑀𝑘 is also a transition
matrix and this is deduced from the discrete Chapman-Kolmogorov equations. From this we conclude
that 𝐴𝑖 (𝑥) = 𝑥/(1 − 𝑥) and the result follows. □

We are currently working on new ways to compute Kemeny’s constant, together with other combi-
natorial quantities that do not depend on the initial point.

Another important fact is that if we denote by 𝜆1 = 1 and 𝜆𝑖 the 𝑖-th biggest eigenvalue of𝑀 one gets

K(𝑥) = 𝑥
∏
𝑖≠1
(1 − 𝑥𝜆𝑖)

This follows since det(𝐼 − 𝑥𝑀) = (1 − 𝑥)∏𝑖≠1 (1 − 𝑥𝜆𝑖).

10

3.2 Upper directed random walks on trees
Let 𝑇 be a finite or infinite tree rooted at ∅. We denote by 𝑝 (𝑢) the parent of 𝑢 in 𝑇 when 𝑢 ≠ ∅ and by
𝑇𝑢 the tree of descendants of 𝑢 rooted at 𝑢 (see Figure 5) and the set of children of 𝑢 in 𝑇 is denoted by
𝑐𝑇 (𝑢).

Definition 7. Let 𝑇 be a finite or infinite tree . A transition matrix U =
(
U𝑢,𝑣

)
𝑢,𝑣∈𝑇 is said to be

almost upper-directed , “AUD ” for short, if

∀𝑢, 𝑣 ∈ 𝑇, U𝑢,𝑣 > 0 =⇒ (𝑣 ∈ {𝑝 (𝑢)} ∪𝑇𝑢)

that is, if either 𝑣 is the parent 𝑝 (𝑢) of 𝑢 or a descendant of 𝑢. Since 𝑢 ∈ 𝑇𝑢 , U𝑢,𝑢 is allowed to be positive.

∅∅∅ ∅

uuu u

Figure 5: The node ∅ is the root, and 𝑢 a node. Triangles represent finite or infinite subtrees, and disks, nodes. On the second
picture, only the transitions from 𝑢 toward dark nodes are possible for almost upper-directed transitions matrices.

For a transition matrix U, a node 𝑎, and a set of nodes 𝐵, we let U𝑎,𝐵 =
∑

𝑏∈𝐵 U𝑎,𝑏 . The tree 𝑇𝑎 is the
subtree of 𝑇 rooted at 𝑎. For a node 𝑢 in 𝑇 and 𝑣 ∈ ⟦∅, 𝑝 (𝑢)⟧, the successor of 𝑣 in the direction of 𝑢 is
denoted by (𝑣,𝑢) (this is the unique child of 𝑣 on the path ⟦∅, 𝑢⟧).

Theorem 6 ([FM24]). Consider U an irreducible AUD transition matrix of a finite or infinite tree 𝑇 . For
any node 𝑢 of 𝑇 , consider the weighted graph (𝑢𝐺, 𝑢U) with set of nodes 𝑢𝑉 := ⟦∅, 𝑢⟧, and in which the
weight of

𝑢U𝑎,𝑏 = (U𝑎,𝑇𝑏 − U𝑎,𝑇(𝑏,𝑢))1𝑏∈⟦𝑝 (𝑎),𝑝 (𝑢)⟧ + 1𝑏=𝑢U𝑎,𝑇𝑢

is defined for all 𝑎 ∈ ⟦∅, 𝑝 (𝑢)⟧ and 𝑏 ∈ ⟦∅, 𝑢⟧. Set

𝜋 (𝑢) = 𝜋 (∅)Weight(⟦∅, 𝑢⟧, 𝑢U, 𝑢)∏
𝑣∈⟧∅,𝑢⟧

U𝑣,𝑝 (𝑣)
= 𝜋 (∅) det((Id−𝑢U) (𝑢))∏

𝑣∈⟧∅,𝑢⟧
U𝑣,𝑝 (𝑣)

. (7)

1. The measure 𝜋 is an invariant measure of U (with positive coordinates).

2. An AUD transition matrix is positive recurrent if and only if
∑
𝜋 (𝑢) < +∞.

Proof. ■Finite tree case. Assume first that U is an AUD irreducible transition matrix on a finite tree𝑇 . In
this finite state case, there is uniqueness of the invariant measure and positive recurrence.

It remains to prove that (7) gives the invariant measure of U. We will use the matrix tree theorem
and (5), and then define for 𝑢 ∈ 𝑇 , the set ST(𝑇, 𝐸U, 𝑢) of spanning trees 𝑡 , with root 𝑢, on the graph
with vertex set 𝑉 = 𝑇 , and set of edge sets corresponding to (almost upper directed) possible transitions
𝐸U := {(𝑖, 𝑗) ∈ 𝑇,U𝑖, 𝑗 > 0}. The edges of a tree are oriented towards its root: thus, for a spanning tree
rooted at 𝑢, there is an edge going out from each vertex, except from 𝑢.

★ An illustration in Figure 6 could help the reader to understand more quickly the argument.
Consider ⟦∅, 𝑢⟧ the ancestral line of 𝑢 in 𝑇 . We claim that ForcedEdges(𝑢), the set of edges (𝑣, 𝑝 (𝑣))

for all 𝑣 ∈ (𝑇 \ ⟦∅, 𝑢⟧), is a subset of the edge set of any (𝜏,𝑢) in SP(𝑇, 𝐸U, 𝑢). Indeed since the edges

11

∅ ∅∅∅

u
u

uu

Figure 6: Each triangle represents a finite or infinite subtree. On the second picture, the blue edges (including those, not drawn,
in the subtrees) are all oriented downwards: these edges are in all spanning trees rooted at 𝑢: the starting point of each oriented
edge is any node which is not in ⟦∅, 𝑢⟧. The set of blue edges forms connected components, that are subtrees, each of them rooted
a different vertices of ⟦∅, 𝑢⟧ (this is the forest 𝐹𝑢 = (𝑓𝑣, 𝑣 ∈ ⟦∅, 𝑢⟧)). On the third picture, an example of what could be the set of
edges going out from ⟦∅, 𝑢⟧ of a spanning tree rooted at 𝑢: either directed to the parent, or to a node among their descendants.
On the last picture, the “spanning tree condition” on ⟦∅, 𝑢⟧. If we redirect each red edge toward the root of the blue component
containing its second extremities, this forms a (red) spanning tree of ⟦∅, 𝑢⟧: this condition is necessary and sufficient for the blue
edges and red edges to form, together, a spanning tree of the global tree, rooted at 𝑢.

of (𝜏,𝑢) are oriented toward 𝑢, each edge (𝑣, 𝑝 (𝑣)) ∈ ForcedEdges(𝑢) is needed to get out of 𝑇𝑣 . Now,
color the edges of ForcedEdges(𝑢) in blue, together with the vertices they contain. Each blue connected
component 𝑓 is a tree, and contains a unique element 𝑣 of ⟦∅, 𝑢⟧, which is the root of 𝑓 . Thus, each node
𝑣 ∈ ⟦∅, 𝑢⟧ is the root of a blue tree 𝑓𝑣 , where, 𝑓𝑣 may be reduced to its root. Each node𝑤 of 𝑇 belongs to
a single tree 𝑓𝑅 (𝑤) of the forest 𝐹𝑢 := (𝑓𝑣, 𝑣 ∈ ⟦∅, 𝑢⟧). In other words, 𝑅(𝑤) is the identity of the root of
this tree, a node of ⟦∅, 𝑢⟧.

Let us now characterize the other edges of a spanning tree (𝜏,𝑢) ∈ SP(𝑇, 𝐸U, 𝑢), those starting from
the nodes ⟦∅, 𝑢⟦.

Lemma 7. Consider a set of edges, with one outgoing edge from each the elements of ⟦∅, 𝑢⟦ :

AddEdges := ((𝑣, 𝑥 (𝑣)), 𝑣 ∈ ⟦∅, 𝑢⟦)

where 𝑥 (𝑣) ∈ 𝑇 for all 𝑣 . The set AddEdges union with ForcedEdges(𝑢) is the set of edges of an element
(𝜏,𝑢) of SP(𝑇, 𝐸U, 𝑢) if the tuple [(𝑣, 𝑅(𝑥 (𝑣))), 𝑣 ∈ ⟦∅, 𝑢⟦] is a spanning tree (𝜏 ′, 𝑢) of ⟦∅, 𝑢⟧.

Remark 2. The "if" in the lemma becomes an "if and only if" if all the edges weight U𝑣1,𝑣2 are positive
between each node 𝑣1 and its descendant 𝑣2 (by hypothesis U𝑣,𝑝 (𝑣) are always positive).

Proof. Given that the blue edges are already present in the forest, we need to understand the structure of
the other edges of (𝜏,𝑢), i.e., those whose starting point in ⟦∅, 𝑢⟦. From each node 𝑣 ∈ ⟦∅, 𝑢⟦, there is a
single outgoing edge (𝑣, 𝑥 (𝑣)) and 𝑥 (𝑣) must belong to an element 𝑓𝑅 (𝑥 (𝑣)) of the (𝑓𝑤,𝑤 ∈ ⟦∅, 𝑢⟧) (since
these trees form a partition of 𝑇). The coefficient U𝑣,𝑥 (𝑣) must be positive, so 𝑥 (𝑣) is either a descendant
of 𝑣 , or its parent; from 𝑥 (𝑣), following the outgoing blue edges forms a path leading to 𝑅(𝑥 (𝑣)), but
these edges are not the subject of this discussion, since they are already fixed (they are blue). Intuitively,
since there is a fixed path from all the nodes of 𝑓𝑅 (𝑥 (𝑣)) toward 𝑅(𝑥 (𝑣)), one can contract any tree 𝑓𝑤
and consider it as a vertex �̄� (which can be identified with𝑤), locally, in the proof. Notice that if several
extreme points 𝑥 (𝑣1) and 𝑥 (𝑣2) belong to the same tree 𝑓𝑤 , then, since in 𝑓𝑤 the blue paths are directed
to the root𝑤 , these paths together do not form a cycle (the contraction does not destroy any cycle). The
contraction is coherent with this point of view (the edges are then directed to ¯𝑅(𝑥 (𝑣))).

12

Once the contractions have been done, the new edges (𝑣, ¯𝑅(𝑥 (𝑣))) must form a spanning tree (𝜏 ′, 𝑢)
of (𝑣, 𝑣 ∈ ⟦∅, 𝑢⟧) (because if it is not the case, the union of AddEdges union with ForcedEdges(𝑢) would
be disconnected). □

Extract from a spanning tree (𝜏,𝑢), the set of edges

SetRedEdges(𝜏,𝑢) = {(𝑣, 𝑥 (𝑣)) ∈ 𝐸 (𝜏,𝑢), 𝑣 ∈ ⟦∅, 𝑢⟦}

going out from ⟦∅, 𝑢⟦. Following Lemma 7 and remark 2, we denote by

SetOfSetRedEdges = {[(𝑣, 𝑥 (𝑣)), 𝑣 ∈ ⟦∅, 𝑢⟦] s.t. [(𝑣, 𝑅(𝑥 (𝑣))), 𝑣 ∈ ⟦∅, 𝑢⟦] is a spanning tree of ⟦∅, 𝑢⟧} .

As said in remark 2, in general the set of all possible SetRedEdges(𝜏,𝑢) is only contained
in SetOfSetRedEdges, because SetOfSetRedEdges contains elements, that contain “red edges” with null
weight. However, since we are now dealing with weights, adding elements with null weights amounts to
adding negligible sets, and this is what we will do. Set

RedWeight(𝑢) =
∑︁

[(𝑣,𝑥 (𝑣)),𝑣∈⟦∅,𝑢⟦]
∈SetOfSetRedEdges

∏
𝑣∈⟦∅,𝑢⟦

U𝑣,𝑥 (𝑣) ,

BlueWeight(𝑢) =
∏

𝑣∈𝑇 \⟦∅,𝑢⟧
U𝑣,𝑝 (𝑣)

this latter being the total weight of ForcedEdges(𝑢). We have that

𝑊 (𝑢) := RedWeight(𝑢) × BlueWeight(𝑢)

is the total weight of all spanning trees rooted at 𝑢 and we need to prove that𝑊 (𝑢) = Cst.𝜋 (𝑢) given in
Equation 7.
In order to complete the proof in the finite case, we need three additional ingredients:
(a) Set Factor(𝑢) = ∏

𝑣∈⟧∅,𝑢⟧ U𝑣,𝑝 (𝑣) , the denominator in equation 7. Since {(𝑣, 𝑝 (𝑣)) :⟧∅, 𝑢⟧} are the
edges we need to add to ForcedEdges(𝑢) to get all the edges of 𝑇 oriented toward ∅, we have

Factor(𝑢) × BlueWeight(𝑢) =
∏

𝑣∈𝑇 \{∅}
U𝑣,𝑝 (𝑣) = Cst.

Hence since we work up to a multiplicative factor, we will use 1/Factor(𝑢) instead of BlueWeight(𝑢),
since the first remains under control when the tree is infinite.
(b) Let us compute RedWeight(𝑢). From the “contraction” point of view, an edge from 𝑎 ∈ ⟦∅, 𝑢⟦ to some
node 𝑏 represents the total weight of edges going from 𝑣 to 𝑓𝑏 : the tree 𝑓𝑏 itself, equals to 𝑇𝑏 \𝑇𝑠 (𝑏,𝑢) (the
subtree 𝑇𝑏 deprived from 𝑇𝑠 (𝑏,𝑢)). The weight of all edges starting at 𝑎 and with second extremity in 𝑓𝑏 is
then 𝑢U𝑎,𝑏 . By the matrix tree theorem we then have

RedWeight(𝑢) = det(Laplacian(𝑢U) (𝑢))

(𝑐) It remains to justify that we can choose the 𝑢U𝑎,𝑎 as we wish: this is standard; in a weighted graphs,
the weight of the spanning trees is independent of the weights of the loops, and the user is then free to
change them according to his personal motivations... This is what we have done by imposing the values
𝑢U𝑎,𝑎 such that the total weights

∑
𝑣
𝑢U𝑎,𝑣 = 1 for all 𝑎. From this choice we find that

det(Laplacian(𝑢U) (𝑢)) = det((Id−𝑢U) (𝑢))

This concludes the proof for the finite case.

■When 𝑇 is an infinite (local finite) tree, write the balance equation at𝑢 for an invariant measure 𝜌 (nor-
malized so that 𝜌 (∅) = 1):

𝜌 (𝑢) =
∑︁

𝑣∈⟦∅,𝑢⟧
𝜌 (𝑣)U𝑣,𝑢 +

∑︁
𝑐∈𝑐𝑇 (𝑢)

𝜌 (𝑐)U𝑐,𝑢 . (8)

13

Wewant to prove that themeasure 𝜌 = 𝜋 given in (7) solves this equation. Thus, if wewrite the invariance
equations for all nodes 𝑢 below a given level ℎ, then all these equations together involve only 𝜌 and
transitions up to level ℎ + 1. Let us cut down this tree!

Consider a transition matrix U(ℎ+2) on say, the finite tree 𝑇 (ℎ+2) of height ℎ + 2 coinciding with𝑇 up
to this level, and define U(ℎ+2)

𝑢,𝑣 as to be U𝑢,𝑣 if |𝑣 | < ℎ + 2, and U(ℎ+2)
𝑢,𝑣 = U𝑢,𝑇𝑣 if |𝑣 | = ℎ + 2. Then we get

that 𝜋 (ℎ+2) the invariant measure of U(ℎ+2) on the finite tree𝑇 (ℎ+2) satisfies, for all 𝑢 such that |𝑢 | ≤ ℎ+ 1
the equation

𝜋 (ℎ+2)U(ℎ+2) = 𝜋 (ℎ+2)

and by uniqueness 𝜋 (ℎ+2) , it is the ℎ-invariant measure of U(ℎ+2) given in equation 7. For 𝑢 such that
|𝑢 | ≤ ℎ + 1, the equation

𝜋
(ℎ+2)
𝑢 =

∑︁
𝑣

𝜋
(ℎ+2)
𝑣 U(ℎ+2)

𝑣,𝑢 (9)

can be represented by the formula of 𝜋 instead, on 𝑇 (ℎ+2) ; indeed, a quick inspection shows that since
the weights involved in the computation of 𝜋 (𝑢) using U and those for the computation of 𝜋 (ℎ+2)

𝑢 using
U(ℎ+2) are the same (these are the transitions on the path on ⟦∅, 𝑢⟧ and the weight toward the subtree 𝑓𝑣
rooted on ⟦∅, 𝑢⟧ thanks to the fact that we took the total U(ℎ+2)

𝑢,𝑣 = U𝑢,𝑇𝑣 if |𝑣 | = ℎ + 2).
From this, we deduce that 𝜋𝑢 =

∑
𝑣 𝜋𝑣U𝑣,𝑢 for all 𝑢 such that |𝑢 | ≤ ℎ, and since ℎ can be taken as large

as wanted, for all 𝑢 ∈ 𝑇 . □

References
[Ald90] David J Aldous. The random walk construction of uniform spanning trees and uniform labelled

trees. SIAM Journal on Discrete Mathematics, 3(4):450–465, 1990.

[Bro89] Andrei Z Broder. Generating random spanning trees. In FOCS, volume 89, pages 442–447, 1989.

[FM23] Luis Fredes and Jean-François Marckert. A combinatorial proof of aldous–broder theorem for
general markov chains. Random Structures & Algorithms, 62(2):430–449, 2023.

[FM24] Luis Fredes and Jean-François Marckert. Markov chains on trees: almost lower and upper di-
rected cases. arXiv preprint arXiv:2411.07158, 2024.

[HLT21] Yiping Hu, Russell Lyons, and Pengfei Tang. A reverse aldous–broder algorithm. 2021.

[Kra06] Christian Krattenthaler. The theory of heaps and the Cartier–Foata monoid, 2006.

[Vie86] Gérard Xavier Viennot. Heaps of pieces, i: Basic definitions and combinatorial lemmas. In
Combinatoire énumérative, pages 321–350. Springer, 1986.

[Zei85] Doron Zeilberger. A combinatorial approach to matrix algebra. Discrete Mathematics, 56(1):61–
72, 1985.

14

	Introduction
	Combinatorics
	Generating function
	Heaps

	Probabilities
	The quantity (`3́9`42`"̇613A``45`47`"603AId-M(r)) is a central object in probability;
	Heap of cycles with weights given by a Markov Chain
	Matrix tree theorem.
	Reversibility
	Invariant measure

	Results
	Kemeny's constant
	Upper directed random walks on trees

